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Supplementary material for “Pathway redundancy and protein essentiality revealed in 
the S. cerevisiae interaction networks”

A: Comparison between dense and connected pathway models

In order to compare the dense pathway and the connected pathway models, we executed 

the model finding algorithm under both assumptions with identical parameters. Table S1

shows that by using connected pathways we construct more between-pathway 

explanations of GIs (3765 vs. 3117), while maintaining the significant functional content 

of BPMs. The dense pathway models are slightly better in terms of enrichment for 

cellular compartments (74% vs. 69%), but this comes at the cost of incorporating lower 

density of GIs between the pathways of BPMs (51% vs. 85%). Since the model score 

proposed in (Kelley and Ideker, 2005) sums the contributions from the GI and the PI 

subnetworks, some of the high-scoring models recovered using that score contain very 

dense pathways, but may be very poor in GIs. This problem is avoided in our approach, 

as the models are scored solely based on the number of GIs between the pathways. In 

terms of functional coverage, we found no clear advantage to either method (Fig. S1).  

Due to the significantly better GI coverage of the connectivity approach we used it in all 

subsequent analysis.

B: Comparison between our model and congruence-based method 

The model-based approach, such as the one used here, and congruence scores, based on 

the similarity of GI profiles, were both shown to be powerful in functional annotation of 

genes and processes (Kelley and Ideker, 2005; Ye et al., 2005). While the congruence-

based method is capable of identifying pathways with coherent genetic data, it does not 

generate hypotheses about buffering between pathways. This is evident in BPM 104

presented in Figure S5. The Csm1/Lsr4 pathway was outlined using the congruence 

score in (Pan et al., 2006). Our modeling suggests specific buffering between Csm1/Lrs4 

and transcription-related complexes CTK1 and Nu4A, which was not recognized 

previously. 

C: Comparison of complex coverage in the PPI network
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In order to compare the functional content of the BPMs to that of modules obtained 

directly from the PI network, we executed the MCODE algorithm (Bader and Hogue, 

2003) for detection of complexes on our PI network. We used the MCODE plug-in for 

Cytoscape (Shannon et al., 2003) with default parameters and obtained 35 complexes. 

We then applied the TANGO algorithm (Shamir et al., 2005) with the same parameters 

used to analyze our set of BPMs, in order to test functional enrichment in the complexes. 

As elaborated in the main text, 46.3% of the annotated complexes were enriched in at 

least one BPM in our analysis. The MCODE complexes covered 53.1% of the complexes. 

Given the current low coverage of the GIs (<15% of S. cerevisiae genes), it is 

encouraging that a large portion of the known complexes can be found (at least in part) in 

our models, which are based primarily on GIs.

D: Additional analysis of the essentiality of the pivot nodes

We validated that the enrichment of essential proteins in the collection of pivot proteins is 

robust to the parameters of pivot selection (Fig. S3). The essential pivots tend to have 

closer functions to their BPMs: when using GO semantic similarity (Lord et al., 2003) as 

a distance function, the average distance between the pivot and the proteins within its 

model is much smaller for an essential pivot than for a non-essential one ( -158.13 10p  

using rank-sum test). Examples of essential pivots that are linked to BPMs that consist 

almost entirely of non-essential genes are shown in Figs. 2B-D.

E: Analysis of physiological properties of the BPM genes

In addition to the analysis of mRNA half-lives and the number of phosphorylation sites 

which is described in the main text, we analyzed the protein abundance (Ghaemmaghami 

et al., 2003) and the codon adaptation index (CAI) (Sharp and Li, 1987). As can be seen

in Table S2, we did not find a statically significant difference for those parameters that 

could not be explained either by essentiality or high degrees of the proteins involved.

F:  Significance filtering of BPMs

Kelley and Ideker (2005) generated a collection of random datasets that preserve the 

degree distributions in the original GI and PI networks, and accepted only models whose 
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score exceeded the 95th percentile of the highest model scores obtained on the 

randomized datasets. On our datasets we found that only a very small number of BPMs 

survived such filtering (12 and 5 models, when using the dense and the connected 

pathways, respectively). (Note that the number connectivity-based models is still larger 

than the density-based one under this aggressive filtering). The fact that the original 

Kelley-Ideker method - with the original significance filtering - also produces much

fewer models on our dataset than in their original analysis (12 vs. 360) is probably due to 

the larger dataset that we used.  The filtering method that we have employed is based on 

sampling of random groups matched in their size to the BPMs (see Materials and 

Methods). It produces more models, yet it provides meaningful models with clear 

biological relevance, as evident in the analysis of functional enrichment and of 

phenotypic coherence of the pathways. 
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Figure S1: 
Functional enrichment in the density-based and the connectivity-based models. A 
comparison between the dense pathways (Kelley and Ideker, 2005) and the connected 
pathways (this study) models in terms of the enrichment for diverse functional 
annotations. Each dot gives the enrichment of one functional category (logarithm base 10 
of p-value enrichment) in the set of BPMs produced under each model. (a) Level 7 of the 
GO "biological process" ontology; (b) GO-slim molecular complexes (obtained from 
SGD) (c) Deletion phenotypes obtained from MIPS (d) KEGG molecular pathways.
Using a sign-test, we found an advantage for using dense pathways only for GO-Slim 
complex annotations. 
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Figure S2: Significance of phenotype coherence. Empirical assessment of the 
significance of the phenotype coherence within (a) and between (b) pathways that belong 
to the same BPM. The density plots represent the phenotype coherence scores (Pearson 
correlation between fitness patterns) obtained in 1,000 randomized samples of collections 
of connected pathways with sizes matching those of the pathways within the BPM 
collection.  X-axis: score, y-axis: number of samples with that score. The scores obtained 
in the BPM collection are circled.
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Figure S3: Robustness of pivot selection parameters. The enrichment of essential 
genes within the group of pivot nodes, as function of the parameters used for pivot 
selection. Enrichment is calculated as the observed number of essential genes divided by 
the expected number.
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Figure S4: Assessment of the results reported for mRNA half-life and number of 
phosphorylation sites for BPM genes. In each test a random set of 1000 genes was 
sampled with the same number of genes from a specific GO biological process category 
as in the BPM gene set. In each plot the X-axis represents the attribute value (mRNA 
half-life or number of phosphorylation sites) and the Y-axis the fraction of the samples 
with that value. The values obtained for the BPM genes are circled.
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Figure S5: BPM 104. This model shows specific buffering between a kinetochore 
subunit Csm1/Lsr4 and parts of the CTK1 and Nu4A complexes. See Figure 2 for 
coloring legend.  
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Models generated using 
dense pathways

Models generated 
using connected 

pathways
No. of models 270 140
No. of genes 728 711
Average model size 11.82 16.02
GIs between pathways 3117 3765
PIs within pathways 2424 1709
GI density between pathways 0.51 0.85
PI density within pathways 0.79 0.75

Average no. of genes with no 
inter-pathway GI

3.89 0.0071

Average no. of genes with at 
most one inter-pathway GI 

5.11 2.16

BPMs 196/270 (72.6%) 100/140 (71.4%)Functional 
enrichment in 
GO bp

pathways 177/540 (32.7%) 100/280 (35.7%)

BPMs 201/270 (74.4%) 97/140   (69.3%)Functional 
enrichment in 
GO cc

pathways 194/520 (37.3%) 94/280   (33.6%)

Table S1: Density-based vs. connectivity-based models. A comparison between the 
models identified using dense pathways and connected pathways. "GO bp"; "biological 
process" ontology in GO. "GO cc": GO "cellular compartment" ontology. Pathways and 
modules were considered enriched if they had a hypergeometric p-value < 0.05.
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Protein abundance Without control
Controlling for  

essentials Controlling for PI degrees
Group No. Average Expected p-value Expected p-value Expected p-value

All pivots 101 32364.94 11593.58 0.225 14683.10 0.88 20730.84 0.076
Essential pivots 59 7996.61 18524.74 0.695 17616.95 0.07 21531.52 <0.001
Non-essential pivots 42 66596.64 9945.70 0.160 10607.90 0.054 20843.31 0.764
BPM genes 704 12960.52 11955.80 0.130 12077.71 0.122 15755.82 <0.001

CAI Without control
Controlling for 

essentials Controlling for PI degrees
Group No. Average Expected p-value Expected p-value Expected p-value

All pivots 124 182.74 163.63 0.227 171.51 0.680 203.61 0.136
Essential pivots 72 150.22 180.69 0.622 177.49 0.038 196.31 <0.001
Non-essential pivots 52 227.77 160.10 0.007 160.91 0.002 209.81 0.262
BPM genes 850 156.86 165.27 0.203 164.64 0.860 180.85 <0.001

mRNA half-life Without control
Controlling for 

essentials Controlling for PI degrees
Group No. Average Expected p-value Expected p-value Expected p-value

All pivots 97 21.80 25.54 0.013 22.68 0.338 22.99 0.400
Essential pivots 54 22.43 19.31 0.155 19.56 0.304 20.03 0.178
Non-essential pivots 43 21.02 26.98 0.075 27.05 0.004 24.07 0.120

BPM genes 658 21.35 26.21 1.95·10-9 25.38 <0.001 23.94 <0.001

Phosphorylation sites Without control
Controlling  for 

essentials Controlling for PI degrees
Group No. Average Expected p-value Expected p-value Expected p-value

All pivots 103 5.17 4.18 0.285 4.32 0.220 4.86 0.976
Essential pivots 58 4.50 4.47 0.843 4.48 0.376 4.80 0.116
Non-essential pivots 45 6.02 4.12 0.009 4.14 0.010 4.82 0.074
BPM genes 740 5.14 4.03 6.25·10-9 4.21 0.002 4.51 <0.001

Table S2: The physiological properties of pivot proteins and of genes within BPMs.
Essential and non-essential pivots are compared to the pool of all essential and non-
essential genes, respectively. p-values without control are computed using Wilcoxon 
rank-sum test.  Controlling for essential genes and for PI degrees is done as described in 
Materials and Methods. Significant figures are in bold.


