### Supporting Information for

Heme Carbonyls: Bond Length Correlations and Environmental Effects on  $\nu$ (CO) and Fe–C/C–O Bond Length Correlations

Nathan J. Silvernail, Arne Roth, Charles E. Schulz, Bruce C. Noll and W. Robert Scheidt\*

Captions for Supporting Information Figures

- Figure S1. Formal diagram of the porphyrinato core of  $[Fe(TPP)(CO)(1,2-Me_2Im)]\cdot C_7H_8$ and  $[Fe(TPP)(CO)(2-MeHIm)]\cdot C_7H_8$  both displaying the perpendicular displacements (in units of 0.01 Å) of the core atoms from the 24-atom mean plane. Positive displacements are toward the carbonyl-coordinated face, while the imidazole ligand is displaced on the negative side of the porphyrin core. The orientation of the imidazole ligand with respect to the porphyrin core is also illustrated. The location of the 2-methyl group is represented by the circle. Average bond distances (Å) and angles (degrees) are also displayed.
- Figure S2. Formal diagram of the porphyrinato core of Fe(TPP)(CO)(1,2-Me<sub>2</sub>Im)] displaying the perpendicular displacements (in units of 0.01 Å) of the core atoms from the 24-atom mean plane. Positive displacements are toward the carbonylcoordinated face, while the imidazole ligand is displaced on the negative side of the porphyrin core. The orientation of the imidazole ligand with respect to the porphyrin core is also illustrated. The location of the 2-methyl group is represented by the circle. Average bond distances (Å) and angles (degrees) are also displayed.
- Figure S3. Formal diagram of the porphyrinato core of  $[Fe(TPP)(CO)(1-MeIm)] \cdot C_6H_6$ displays the perpendicular displacements (in units of 0.01 Å) of the core atoms from the 24-atom mean plane. Positive displacements are toward the carbonylcoordinated face, while the imidazole ligand is displaced on the negative side of the porphyrin core. The orientation of the imidazole ligand with respect to the porphyrin core is also illustrated. The location of the 1-methyl group is represented by the circle. Average bond distances (Å) and angles (degrees) are also displayed.

- Figure S4. Diagrams illustrating the herringbone-like crystal packing pattern of a) [Fe- $(TPP)(CO)(1,2-Me_2Im)$ ]·C<sub>7</sub>H<sub>8</sub> (left) and b) [Fe(TPP)(CO)(2-MeHIm)]·C<sub>7</sub>H<sub>8</sub> (right) with solvent and phenyl groups omitted for clarity.
- Figure S5. Plots showing the correlation and inverse correlation between C–O and Fe–C distances (Å) and  $\nu$ (CO) (cm<sup>-1</sup>). The figures include all carbonyl iron(II) imidazole structures. The points of the left panel are fit linearly with an R = 0.15.<sup>1</sup> The right panel is also fit linearly with an R = 0.14.
- Figure S6. ORTEP diagram (50% probability ellipsoids) of [Fe(TPP)(CO)(1,2-Me<sub>2</sub>Im)]·C<sub>7</sub>H<sub>8</sub>. Significant hydrogen atoms are displayed, all other hydrogen atoms are omitted for clarity. The tilt of the Fe-N<sub>Im</sub> off of the heme normal may be observed.
- Figure S7. Illustration showing the environment of the oxygen in the unsolvated form of [Fe(TPP)(CO)(1,2-Me<sub>2</sub>Im)]. Imidazoles and peripheral substituents, with the exception of the hydrogens within 3.5 Å, are omitted for clarity.



24-Atom Diagram of [Fe(TPP)(1,2-DiMeIm)(CO)].C7H8

Figure S-1

-29

C(m3)

-38

14

#### 24-Atom Diagram of [Fe(TPP)(1,2-DiMeIm)(CO)] (2-fold)









Figure S-3



Figure S-4



Figure S-5



Figure S-6



Figure S-7

|                                                         | [Fe(TPP)(CO)-                                                 | [Fe(TPP)(CO)-                   | [Fe(TPP)(CO)-                                              | [Fe(TPP)(CO)-                                              |
|---------------------------------------------------------|---------------------------------------------------------------|---------------------------------|------------------------------------------------------------|------------------------------------------------------------|
|                                                         | $(1,2-Me_2Im)]\cdot C_7H_8$                                   | $(2-MeHIm)] \cdot C_7H_8$       | $(1, 2-Me_2Im)]$                                           | $(1-MeIm)] \cdot C_6 H_6$                                  |
| empirical formula                                       | $\mathrm{C}_{57.05}\mathrm{H}_{36}\mathrm{FeN}_{6}\mathrm{O}$ | $\rm C_{56}H_{34}FeN_6O$        | $\mathrm{C}_{50}\mathrm{H}_{36}\mathrm{FeN}_{6}\mathrm{O}$ | $\mathrm{C}_{55}\mathrm{H}_{40}\mathrm{FeN}_{6}\mathrm{O}$ |
| FW, amu                                                 | 877.34                                                        | 862.74                          | 792.70                                                     | 856.78                                                     |
| a, Å                                                    | 13.1599(5)                                                    | 13.1961(2)                      | 15.0577(8)                                                 | 9.6313(19)                                                 |
| b, Å                                                    | 23.6195(9)                                                    | 23.4514(3)                      | 18.8294(10)                                                | 13.189(3)                                                  |
| <i>c</i> , Å                                            | 14.4695(6)                                                    | 14.2630(2)                      | 13.7197(7)                                                 | 17.622(4)                                                  |
| $\alpha$ , deg                                          |                                                               |                                 |                                                            | 75.25(3)                                                   |
| $\beta$ , deg                                           | 101.561(2)                                                    | 105.198(1)                      | 102.894(1)                                                 | 88.95(3)                                                   |
| $\gamma, \deg$                                          |                                                               |                                 |                                                            | 81.52(3)                                                   |
| $V, Å^3$                                                | 4406.3(3)                                                     | 4259.6(1)                       | 3791.8(3)                                                  | 2140.6(7)                                                  |
| space group                                             | $P2_1/n$                                                      | $P2_1/n$                        | C2/c                                                       | $P\bar{1}$                                                 |
| Z                                                       | 4                                                             | 4                               | 4                                                          | 2                                                          |
| crystal color                                           | dark red                                                      | dark red                        | dark red                                                   | dark red                                                   |
| crystal dimensions, mm                                  | $0.58\times0.20\times0.13$                                    | $0.66\times0.39\times0.27$      | $0.40\times0.30\times0.20$                                 | $0.29\times0.26\times0.10$                                 |
| temp, K                                                 | 100                                                           | 100                             | 100                                                        | 100                                                        |
| total data collected                                    | 72726                                                         | 66278                           | 20612                                                      | 45838                                                      |
| unique data                                             | 15956 ( $R_{\rm int} = 0.034$ )                               | 15413 ( $R_{\rm int} = 0.037$ ) | $4695 \ (R_{\rm int} = 0.0376)$                            | 15633 ( $R_{\rm int} = 0.035$ )                            |
| unique obs<br>d data $[\mathrm{I}>2\sigma(\mathrm{I})]$ | 11874                                                         | 12118                           | 4169                                                       | 11562                                                      |
| goodness-of-fit (based on $F^2$ )                       | 1.098                                                         | 1.062                           | 1.052                                                      | 1.024                                                      |
| final $R$ indices                                       | $R_1 = 0.0426$                                                | $R_1 = 0.0446$                  | $R_1 = 0.0406$                                             | $R_1 = 0.0459$                                             |
| $[\mathrm{I} > 2\sigma(\mathrm{I})]$                    | $wR_2 = 0.1203$                                               | $wR_2 = 0.1173$                 | $wR_2 = 0.1073$                                            | $wR_2 = 0.1155$                                            |
| final $R$ indices                                       | $R_1 = 0.0614$                                                | $R_1 = 0.0619$                  | $R_1 = 0.0453$                                             | $R_1 = 0.0615$                                             |
| (all data)                                              | $wR_2 = 0.1271$                                               | $wR_2 = 0.1286$                 | $wR_2 = 0.1115$                                            | $wR_2 = 0.1259$                                            |

**Table S1.** Crystallographic details for  $[Fe(TPP)(CO)(1,2-Me_2Im)] \cdot C_7H_8$ ,  $[Fe(TPP)(CO)(2-MeHIm)] \cdot C_7H_8$ ,  $[Fe(TPP)(CO)(1,2-Me_2Im)]$  and  $[Fe(TPP)(CO)(1-MeIm)] \cdot C_6H_6$ 

\_

| formula                                 | $C_{56.77}H_{39.46}FeN_6O$                 |
|-----------------------------------------|--------------------------------------------|
| FW, amu                                 | 877.58                                     |
| a, Å                                    | 13.1599(5)                                 |
| b, Å                                    | 23.6195(9)                                 |
| <i>c</i> , Å                            | 14.4695(6)                                 |
| $\beta$ , deg                           | 101.561(2)                                 |
| $V, Å^3$                                | 4406.3(3)                                  |
| space group                             | P2(1)/n                                    |
| Ζ                                       | 4                                          |
| $D_c, g/cm^3$                           | 1.323                                      |
| F(000)                                  | 1824                                       |
| $\mu$ , mm <sup>-1</sup>                | 0.392                                      |
| crystal dimensions, mm                  | $0.58 \times 0.20 \times 0.13$             |
| radiation                               | MoK $\alpha$ , $\bar{\lambda} = 0.71073$ Å |
| temperature, K                          | 100(2)                                     |
| diffractometer                          | Bruker Apex CCD                            |
| $\theta$ range for collected data, deg  | 1.68 - 32.50                               |
| index range                             | $-14 \le h \le 19$                         |
|                                         | $-35 \le k \le 25$                         |
|                                         | $-21 \le l \le 21$                         |
| total data collected                    | 72726                                      |
| absorption correction                   | Semi-empirical from<br>equiv               |
| relative transmission coefficients (I)  | 0.9493 and $0.8051$                        |
| unique data                             | 15956 ( $R_{\rm int} = 0.034$ )            |
| unique observed data $[I > 2\sigma(I)]$ | 11874                                      |
| refinement method                       | Full-matrix least-squares on $F^2$         |
| data/restraints/parameters              | 15956/0/611                                |
| goodness-of-fit (pased on $F^2$ )       | 1.120                                      |
| final $R$ indices $[I > 2\sigma(I)]$    | $R_1 = 0.0487, wR_2 = 0.1473$              |
| final $R$ indices (all data)            | $R_1 = 0.0675, wR_2 = 0.1559$              |

**Table S2.** Complete Crystallographic Details for  $[Fe(TPP)(CO)(1,2-DiMeIm)] \cdot C_7H_8$ 

| atom  | x           | y          | z           | $U(\mathrm{eq})$ |  |
|-------|-------------|------------|-------------|------------------|--|
| Fe(1) | 0.34684(2)  | 0.19502(1) | 0.62892(1)  | 0.0163(1)        |  |
| N(1)  | 0.23740(9)  | 0.21653(5) | 0.69822(8)  | 0.0184(2)        |  |
| N(2)  | 0.43569(9)  | 0.25891(5) | 0.68878(9)  | 0.0201(2)        |  |
| N(3)  | 0.45596(9)  | 0.17387(5) | 0.55866(8)  | 0.0199(2)        |  |
| N(4)  | 0.25458(9)  | 0.13469(5) | 0.56410(8)  | 0.0180(2)        |  |
| C(a1) | 0.15621(11) | 0.18332(6) | 0.71336(10) | 0.0200(3)        |  |
| C(a2) | 0.23492(11) | 0.26457(6) | 0.75111(10) | 0.0193(3)        |  |
| C(a3) | 0.40253(12) | 0.30449(6) | 0.73415(10) | 0.0209(3)        |  |
| C(a4) | 0.53642(12) | 0.27058(6) | 0.68175(11) | 0.0231(3)        |  |
| C(a5) | 0.55781(12) | 0.19192(6) | 0.57566(11) | 0.0222(3)        |  |
| C(a6) | 0.44792(12) | 0.13306(6) | 0.48959(10) | 0.0204(3)        |  |
| C(a7) | 0.26782(11) | 0.10414(6) | 0.48630(9)  | 0.0184(2)        |  |
| C(a8) | 0.16360(11) | 0.11556(6) | 0.58606(10) | 0.0193(3)        |  |
| C(b1) | 0.10483(11) | 0.21028(7) | 0.78087(11) | 0.0242(3)        |  |
| C(b2) | 0.15082(11) | 0.26141(7) | 0.80131(11) | 0.0238(3)        |  |
| C(b3) | 0.48382(12) | 0.34643(6) | 0.75436(11) | 0.0260(3)        |  |
| C(b4) | 0.56701(13) | 0.32513(7) | 0.72442(12) | 0.0277(3)        |  |
| C(b5) | 0.61504(12) | 0.15993(6) | 0.51767(11) | 0.0247(3)        |  |
| C(b6) | 0.54697(12) | 0.12471(6) | 0.46350(11) | 0.0231(3)        |  |
| C(b7) | 0.17875(11) | 0.06839(6) | 0.45426(10) | 0.0219(3)        |  |
| C(b8) | 0.11572(11) | 0.07463(6) | 0.51695(11) | 0.0225(3)        |  |
| C(m1) | 0.30705(11) | 0.30878(6) | 0.76148(10) | 0.0197(3)        |  |
| C(m2) | 0.59699(11) | 0.23784(6) | 0.63318(11) | 0.0233(3)        |  |
| C(m3) | 0.35857(11) | 0.10248(6) | 0.45104(10) | 0.0197(3)        |  |
| C(m4) | 0.12096(11) | 0.13460(6) | 0.66165(10) | 0.0207(3)        |  |
| C(11) | 0.27918(11) | 0.36287(6) | 0.80347(10) | 0.0213(3)        |  |
| C(12) | 0.20072(13) | 0.39599(7) | 0.75123(12) | 0.0277(3)        |  |
| C(13) | 0.17394(13) | 0.44814(7) | 0.78482(13) | 0.0296(3)        |  |
| C(14) | 0.22555(12) | 0.46691(7) | 0.87228(12) | 0.0266(3)        |  |
| C(15) | 0.30231(13) | 0.43400(7) | 0.92610(11) | 0.0265(3)        |  |
| C(16) | 0.32958(12) | 0.38215(6) | 0.89169(11) | 0.0241(3)        |  |
| C(21) | 0.70647(12) | 0.25634(6) | 0.63629(12) | 0.0265(3)        |  |
| C(22) | 0.77671(12) | 0.26081(7) | 0.72124(13) | 0.0291(3)        |  |
| C(23) | 0.87821(13) | 0.27870(7) | 0.72451(15) | 0.0345(4)        |  |

**Table S3.** Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>) for  $[Fe(TPP)(CO)(1,2-DiMeIm)] \cdot C_7 H_8^a$ 

| atom  | x            | y            | z           | $U(\mathrm{eq})$ |
|-------|--------------|--------------|-------------|------------------|
| C(24) | 0.91056(14)  | 0.29202(8)   | 0.64179(17) | 0.0416(5)        |
| C(25) | 0.84151(16)  | 0.28823(9)   | 0.55686(16) | 0.0425(5)        |
| C(26) | 0.74008(14)  | 0.27082(8)   | 0.55329(14) | 0.0352(4)        |
| C(31) | 0.36665(11)  | 0.06184(6)   | 0.37320(10) | 0.0202(3)        |
| C(32) | 0.35083(13)  | 0.08028(7)   | 0.28007(11) | 0.0266(3)        |
| C(33) | 0.36869(14)  | 0.04420(7)   | 0.20883(11) | 0.0300(3)        |
| C(34) | 0.40334(12)  | -0.01033(7)  | 0.23072(11) | 0.0278(3)        |
| C(35) | 0.41630(12)  | -0.02980(7)  | 0.32278(11) | 0.0264(3)        |
| C(36) | 0.39699(12)  | 0.00615(6)   | 0.39342(10) | 0.0233(3)        |
| C(41) | 0.03137(11)  | 0.10282(6)   | 0.68491(11) | 0.0226(3)        |
| C(42) | 0.04738(13)  | 0.04875(7)   | 0.72354(13) | 0.0302(3)        |
| C(43) | -0.03469(14) | 0.01873(7)   | 0.74795(13) | 0.0342(4)        |
| C(44) | -0.13308(14) | 0.04212(8)   | 0.73275(13) | 0.0338(4)        |
| C(45) | -0.14985(13) | 0.09537(8)   | 0.69279(13) | 0.0323(4)        |
| C(46) | -0.06847(12) | 0.12587(7)   | 0.66923(12) | 0.0278(3)        |
| C(1)  | 0.39421(11)  | 0.14754(6)   | 0.72063(10) | 0.0221(3)        |
| N(5)  | 0.29926(11)  | 0.25201(6)   | 0.51939(11) | 0.0209(5)        |
| C(2)  | 0.20696(10)  | 0.26897(5)   | 0.47433(9)  | 0.0233(5)        |
| N(6)  | 0.21452(11)  | 0.31261(6)   | 0.41643(10) | 0.0287(11)       |
| C(3)  | 0.31903(12)  | 0.32434(7)   | 0.42497(12) | 0.0344(6)        |
| C(4)  | 0.37061(10)  | 0.28701(8)   | 0.48860(12) | 0.0280(6)        |
| C(5)  | 0.10611(12)  | 0.24448(9)   | 0.48511(16) | 0.0331(7)        |
| C(6)  | 0.13101(15)  | 0.34090(10)  | 0.35197(16) | 0.0445(7)        |
| N(5') | 0.25983(18)  | 0.24862(10)  | 0.52244(17) | 0.0188(8)        |
| C(2') | 0.28591(14)  | 0.28972(9)   | 0.46985(15) | 0.0240(8)        |
| N(6') | 0.20210(17)  | 0.31204(10)  | 0.41299(16) | 0.033(2)         |
| C(3') | 0.11635(14)  | 0.28322(12)  | 0.4305(2)   | 0.0366(11)       |
| C(4') | 0.15257(18)  | 0.24429(11)  | 0.4975(2)   | 0.0233(9)        |
| C(5') | 0.39316(16)  | 0.30951(15)  | 0.4707(3)   | 0.0336(11)       |
| C(6') | 0.1985(3)    | 0.35978(15)  | 0.3488(3)   | 0.0445(7)        |
| C(51) | 0.2613(4)    | 0.07518(14)  | -0.0534(3)  | 0.0651(17)       |
| C(56) | 0.3388(3)    | 0.03668(17)  | -0.0618(3)  | 0.0608(16)       |
| C(52) | 0.3273(3)    | -0.02018(16) | -0.0414(3)  | 0.0585(15)       |
| C(54) | 0.2382(4)    | -0.03854(15) | -0.0126(4)  | 0.096(3)         |

Table S3. Continued

| atom  | x           | y           | z            | U(eq)     |
|-------|-------------|-------------|--------------|-----------|
| C(53) | 0.1607(3)   | 0.0000(2)   | -0.0042(4)   | 0.089(2)  |
| C(55) | 0.1723(3)   | 0.05682(19) | -0.0246(4)   | 0.076(2)  |
| C(57) | 0.0865(8)   | 0.0965(4)   | -0.0130(7)   | 0.096(3)  |
| C(60) | 0.4749(7)   | 0.0511(4)   | -0.0104(6)   | 0.109(3)  |
| C(61) | 0.5787(6)   | 0.0374(4)   | 0.0210(9)    | 0.172(5)  |
| C(62) | 0.6078(9)   | -0.0187(6)  | 0.0391(10)   | 0.185(6)  |
| C(63) | 0.5330(15)  | -0.0611(4)  | 0.026(3)     | 0.200     |
| C(64) | 0.4291(13)  | -0.0474(6)  | -0.006(4)    | 0.200     |
| C(65) | 0.4000(7)   | 0.0088(7)   | -0.024(3)    | 0.200     |
| C(70) | 0.0165(13)  | 0.0545(7)   | 0.0118(11)   | 0.115(5)  |
| C(71) | 0.0521(5)   | 0.0379(4)   | 0.0000(2)    | 0.100(5)  |
| C(72) | 0.0628(7)   | -0.0182(4)  | -0.0253(2)   | 0.102(4)  |
| C(73) | 0.1478(8)   | -0.0347(3)  | -0.0624(2)   | 0.117(5)  |
| C(74) | 0.2222(6)   | 0.0050(5)   | -0.07418(19) | 0.138(6)  |
| C(75) | 0.2115(7)   | 0.0612(4)   | -0.04885(12) | 0.132(6)  |
| C(76) | 0.1264(7)   | 0.0776(3)   | -0.01176(15) | 0.108(5)  |
| O(1)  | 0.41914(12) | 0.11559(6)  | 0.77996(10)  | 0.0475(4) |

Table S3. Continued

<sup>*a*</sup>U(eq) is defined as one third of the trace of the orthogonalized  $\mathbf{U}_{ij}$  tensor. The estimated standard deviations of the least significant digits are given in parentheses.

| bond                         | length (Å) | bond                                            | length (Å) |
|------------------------------|------------|-------------------------------------------------|------------|
| Fe(1)-C(1)                   | 1.7537(15) | C(36)-H(36)                                     | 0.9500     |
| ${ m Fe}(1) – { m N}(1)$     | 1.9790(12) | C(41)-C(42)                                     | 1.393(2)   |
| ${ m Fe}(1)$ – ${ m N}(4)$   | 1.9819(12) | C(41)-C(46)                                     | 1.398(2)   |
| ${ m Fe}(1) – { m N}(3)$     | 1.9826(12) | C(42)-C(43)                                     | 1.395(2)   |
| ${ m Fe}(1) – { m N}(2)$     | 1.9972(12) | C(42)-H(42)                                     | 0.9500     |
| ${ m Fe}(1) – { m N}(5)$     | 2.0779(11) | C(43)-C(44)                                     | 1.384(3)   |
| ${ m Fe}(1)$ –N(5 $\prime$ ) | 2.1402(18) | C(43)-H(43)                                     | 0.9500     |
| N(1)– $C(a2)$                | 1.3728(17) | C(44)-C(45)                                     | 1.383(3)   |
| N(1)– $C(a1)$                | 1.3778(18) | C(44) - H(44)                                   | 0.9500     |
| N(2)– $C(a3)$                | 1.3767(18) | C(45)-C(46)                                     | 1.389(2)   |
| N(2)– $C(a4)$                | 1.3776(18) | C(45) - H(45)                                   | 0.9500     |
| N(3)– $C(a6)$                | 1.3771(18) | C(46)-H(46)                                     | 0.9500     |
| N(3)– $C(a5)$                | 1.3808(19) | ${ m C}(1)$ – ${ m O}(1)$                       | 1.1408(19) |
| N(4)– $C(a8)$                | 1.3752(17) | m N(5)- m C(2)                                  | 1.3204     |
| N(4)– $C(a7)$                | 1.3774(17) | N(5)-C(4)                                       | 1.3898     |
| C(a1)-C(m4)                  | 1.400(2)   | ${ m C}(2) egin{-}{ m N}(6)$                    | 1.3446     |
| C(a1)– $C(b1)$               | 1.443(2)   | ${ m C}(2){ m -}{ m C}(5)$                      | 1.4845     |
| C(a2)-C(m1)                  | 1.3989(19) | m N(6)- m C(3)                                  | 1.3840     |
| C(a2)– $C(b2)$               | 1.442(2)   | m N(6)- m C(6)                                  | 1.4537     |
| C(a3)-C(m1)                  | 1.395(2)   | ${ m C}(3){ m -}{ m C}(4)$                      | 1.3548     |
| C(a3)– $C(b3)$               | 1.444(2)   | $\rm C(3)–H(3a)$                                | 0.9500     |
| C(a4)– $C(m2)$               | 1.397(2)   | $\rm C(4)–H(4a)$                                | 0.9500     |
| C(a4)-C(b4)                  | 1.450(2)   | m C(5)-H(5a)                                    | 1.08(4)    |
| C(a5)-C(m2)                  | 1.401(2)   | m C(5)- m H(5b)                                 | 0.85(4)    |
| C(a5)-C(b5)                  | 1.448(2)   | m C(5)- m H(5C)                                 | 0.84(4)    |
| C(a6)-C(m3)                  | 1.397(2)   | m C(6)-H(6a)                                    | 1.09(4)    |
| C(a6)-C(b6)                  | 1.441(2)   | C(6)– $H(6b)$                                   | 0.85(4)    |
| C(a7)-C(m3)                  | 1.3901(19) | $\rm C(6)-H(6C)$                                | 0.97(4)    |
| C(a7)-C(b7)                  | 1.444(2)   | $ m N(5\prime)- m C(2\prime)$                   | 1.3206     |
| C(a8)-C(m4)                  | 1.400(2)   | $N(5\prime)-C(4\prime)$                         | 1.3889     |
| C(a8)– $C(b8)$               | 1.4419(19) | $\mathrm{C}(2\prime)	ext{-N}(6\prime)$          | 1.3445     |
| $\rm C(b1)–C(b2)$            | 1.357(2)   | $\mathrm{C}(2\prime)	ext{-}\mathrm{C}(5\prime)$ | 1.4844     |
| C(b1)-H(b1)                  | 0.9500     | $N(6\prime)-C(3\prime)$                         | 1.3841     |
| C(b2)– $H(b2)$               | 0.9500     | $N(6\prime)-C(6\prime)$                         | 1.4557     |

Table S4. Bond Lengths for  $[Fe(TPP)(CO)(1,2-DiMeIm)] \cdot C_7 H_8{}^a$ 

| bond                | length (Å) | bond                                                | length (Å) |
|---------------------|------------|-----------------------------------------------------|------------|
| C(b3)-C(b4)         | 1.353(2)   | $\mathrm{C}(3\prime)	ext{-}\mathrm{C}(4\prime)$     | 1.3516     |
| $\rm C(b3){-}H(b3)$ | 0.9500     | ${ m C}(3\prime){ m -H}(5{ m C})$                   | 1.20(4)    |
| C(b4)-H(b4)         | 0.9500     | $\mathrm{C}(3\prime)\mathrm{-H}(3\prime\mathrm{a})$ | 0.9500     |
| C(b5)-C(b6)         | 1.352(2)   | $ m C(4\prime)-H(5a)$                               | 1.16(4)    |
| m C(b5)-H(b5)       | 0.9500     | $ m C(4\prime)- m H(5b)$                            | 1.22(4)    |
| $\rm C(b6)-H(b6)$   | 0.9500     | $C(4\prime)$ – $H(4\prime a)$                       | 0.9500     |
| m C(b7)- m C(b8)    | 1.354(2)   | $\mathrm{C}(5\prime)\mathrm{-H}(5\prime\mathrm{a})$ | 0.9800     |
| $\rm C(b7)-H(b7)$   | 0.9500     | $\mathrm{C}(5\prime)\mathrm{-H}(5\prime\mathrm{b})$ | 0.9800     |
| $\rm C(b8)-H(b8)$   | 0.9500     | $\mathrm{C}(5\prime)\mathrm{-H}(5\prime\mathrm{C})$ | 0.9800     |
| C(m1)-C(11)         | 1.4917(19) | $\rm C(6\prime)-H(6b)$                              | 0.62(4)    |
| C(m2)– $C(21)$      | 1.498(2)   | $C(6\prime)-H(6\prime a)$                           | 0.9800     |
| C(m3)– $C(31)$      | 1.4998(19) | $C(6\prime)-H(6\prime b)$                           | 0.9800     |
| C(m4)-C(41)         | 1.4919(19) | $C(6\prime)$ – $H(6\prime C)$                       | 0.9800     |
| C(11)-C(12)         | 1.392(2)   | m C(51)- m C(56)                                    | 1.3900     |
| C(11)-C(16)         | 1.392(2)   | ${ m C}(51) – { m C}(55)$                           | 1.3900     |
| C(12)-C(13)         | 1.395(2)   | C(51)– $H(51a)$                                     | 0.9500     |
| C(12)-H(12)         | 0.9500     | ${ m C}(56){ m -}{ m C}(52)$                        | 1.3900     |
| C(13)-C(14)         | 1.384(2)   | m C(56)-H(56a)                                      | 0.9500     |
| C(13) - H(13)       | 0.9500     | C(52)– $C(54)$                                      | 1.3900     |
| C(14)-C(15)         | 1.384(2)   | $\rm C(52){-}H(52a)$                                | 0.9500     |
| C(14)-H(14)         | 0.9500     | ${ m C}(54){ m -}{ m C}(53)$                        | 1.3900     |
| C(15)-C(16)         | 1.396(2)   | C(54)– $H(54a)$                                     | 0.9500     |
| C(15)-H(15)         | 0.9500     | m C(53)– m C(55)                                    | 1.3900     |
| C(16)-H(16)         | 0.9500     | C(53)– $H(53a)$                                     | 0.9500     |
| C(21)-C(22)         | 1.386(2)   | C(55)-C(57)                                         | 1.502(11)  |
| C(21)-C(26)         | 1.403(2)   | C(57)– $H(57a)$                                     | 0.9800     |
| C(22)-C(23)         | 1.393(2)   | C(57)-H(57b)                                        | 0.9800     |
| C(22)-H(22)         | 0.9500     | C(57)-H(57C)                                        | 0.9800     |
| C(23)-C(24)         | 1.385(3)   | C(60)-C(62)#1)                                      | 1.327(19)  |
| C(23)-H(23)         | 0.9500     | C(60)-C(61)                                         | 1.3900     |
| C(24)-C(25)         | 1.377(3)   | C(61)-C(62)                                         | 1.3900     |
| C(24)-H(24)         | 0.9500     | C(62)-C(60)#1)                                      | 1.327(14)  |
| C(25)-C(26)         | 1.388(2)   | C(70)-C(71)                                         | 0.660(18)  |
| $\rm C(25)-H(25)$   | 0.9500     | C(70)-C(72)#2)                                      | 1.394(17)  |

Table S4. Continued

| bond           | length (Å) | bond                         | length (Å) |
|----------------|------------|------------------------------|------------|
| C(26)-H(26)    | 0.9500     | C(70) - C(76)                | 1.64(2)    |
| C(31)-C(36)    | 1.389(2)   | C(71)-C(72)                  | 1.3900     |
| C(31)-C(32)    | 1.392(2)   | C(71)-C(76)                  | 1.3900     |
| C(32)– $C(33)$ | 1.393(2)   | C(71)-C(72)#2)               | 1.690(16)  |
| C(32)– $H(32)$ | 0.9500     | ${ m C}(72){ m -}{ m C}(73)$ | 1.3900     |
| C(33)-C(34)    | 1.382(2)   | C(72)-C(70)#2)               | 1.393(16)  |
| C(33)– $H(33)$ | 0.9500     | C(72)-C(71)#2)               | 1.690(15)  |
| C(34)-C(35)    | 1.387(2)   | C(73)-C(74)                  | 1.3900     |
| C(34)-H(34)    | 0.9500     | C(74)-C(75)                  | 1.3900     |
| C(35)-C(36)    | 1.391(2)   | ${ m C}(75) – { m C}(76)$    | 1.3900     |
| C(35)-H(35)    | 0.9500     |                              |            |

Table S4. Continued

| angle                           | degree     | angle                                | degree     |
|---------------------------------|------------|--------------------------------------|------------|
| C(1)-Fe(1)-N(1)                 | 88.00(6)   | C(35)-C(36)-H(36)                    | 119.6      |
| C(1)– $Fe(1)$ – $N(4)$          | 89.40(6)   | C(42)-C(41)-C(46)                    | 118.92(14) |
| N(1)-Fe(1)-N(4)                 | 89.15(5)   | C(42)-C(41)-C(m4)                    | 119.28(13) |
| C(1)– $Fe(1)$ – $N(3)$          | 92.45(6)   | C(46)-C(41)-C(m4)                    | 121.80(14) |
| N(1)– $Fe(1)$ – $N(3)$          | 179.55(5)  | C(41)-C(42)-C(43)                    | 120.33(16) |
| N(4)–Fe $(1)$ –N $(3)$          | 90.81(5)   | C(41)-C(42)-H(42)                    | 119.8      |
| C(1)– $Fe(1)$ – $N(2)$          | 93.81(6)   | C(43)-C(42)-H(42)                    | 119.8      |
| N(1)– $Fe(1)$ – $N(2)$          | 90.50(5)   | C(44)-C(43)-C(42)                    | 120.26(17) |
| N(4)–Fe $(1)$ –N $(2)$          | 176.75(5)  | C(44)-C(43)-H(43)                    | 119.9      |
| N(3)– $Fe(1)$ – $N(2)$          | 89.51(5)   | C(42)-C(43)-H(43)                    | 119.9      |
| C(1)– $Fe(1)$ – $N(5)$          | 176.77(6)  | C(45)-C(44)-C(43)                    | 119.67(15) |
| N(1)– $Fe(1)$ – $N(5)$          | 94.68(6)   | C(45)-C(44)-H(44)                    | 120.2      |
| N(4)–Fe $(1)$ –N $(5)$          | 92.43(6)   | C(43)-C(44)-H(44)                    | 120.2      |
| N(3)–Fe $(1)$ –N $(5)$          | 84.87(6)   | C(44)-C(45)-C(46)                    | 120.53(16) |
| N(2)-Fe(1)-N(5)                 | 84.38(6)   | C(44)-C(45)-H(45)                    | 119.7      |
| $C(1)$ – $Fe(1)$ – $N(5\prime)$ | 168.73(8)  | C(46)-C(45)-H(45)                    | 119.7      |
| N(1)-Fe(1)-N(5')                | 82.77(8)   | C(45)-C(46)-C(41)                    | 120.27(16) |
| N(4)-Fe(1)-N(5')                | 84.03(8)   | C(45)-C(46)-H(46)                    | 119.9      |
| $N(3)-Fe(1)-N(5\prime)$         | 96.77(8)   | C(41)-C(46)-H(46)                    | 119.9      |
| N(2)-Fe(1)-N(5')                | 92.73(8)   | ${ m O}(1){-}{ m C}(1){-}{ m Fe}(1)$ | 175.95(14) |
| N(5)-Fe(1)-N(5')                | 14.49(6)   | C(2)-N(5)-C(4)                       | 106.0      |
| C(a2)– $N(1)$ – $C(a1)$         | 106.03(11) | $ m C(2){-}N(5){-}Fe(1)$             | 132.84(8)  |
| C(a2)-N(1)-Fe(1)                | 126.56(9)  | $ m C(4){-}N(5){-}Fe(1)$             | 120.67(8)  |
| C(a1)-N(1)-Fe(1)                | 126.92(10) | N(5)-C(2)-N(6)                       | 111.4      |
| C(a3)-N(2)-C(a4)                | 106.28(12) | N(5)-C(2)-C(5)                       | 125.7      |
| C(a3)– $N(2)$ – $Fe(1)$         | 125.71(10) | N(6)-C(2)-C(5)                       | 122.9      |
| C(a4)-N(2)-Fe(1)                | 127.42(10) | ${ m C}(2){ m -N}(6){ m -C}(3)$      | 107.1      |
| C(a6)-N(3)-C(a5)                | 106.03(12) | ${ m C}(2){ m -N}(6){ m -C}(6)$      | 127.7      |
| C(a6)-N(3)-Fe(1)                | 126.18(10) | C(3)-N(6)-C(6)                       | 125.1      |
| C(a5)-N(3)-Fe(1)                | 127.43(10) | C(4)-C(3)-N(6)                       | 106.5      |
| C(a8)-N(4)-C(a7)                | 105.98(11) | C(4)-C(3)-H(3a)                      | 126.7      |
| C(a8)-N(4)-Fe(1)                | 127.31(9)  | N(6)-C(3)-H(3a)                      | 126.7      |
| C(a7)-N(4)-Fe(1)                | 126.70(9)  | C(3)-C(4)-N(5)                       | 109.0      |
| N(1)-C(a1)-C(m4)                | 124.57(13) | $ m C(3){-}C(4){-}H(4a)$             | 125.5      |

Table S5. Bond Angles for  $[Fe(TPP)(CO)(1,2-DiMeIm)] \cdot C_7 H_8{}^a$ 

| Table S5. | Continued |
|-----------|-----------|
|-----------|-----------|

| angle                    | degree     | angle                                                                       | degree     |
|--------------------------|------------|-----------------------------------------------------------------------------|------------|
| N(1)-C(a1)-C(b1)         | 109.87(12) | N(5)-C(4)-H(4a)                                                             | 125.5      |
| C(m4)-C(a1)-C(b1)        | 125.07(13) | C(2)-C(5)-H(5a)                                                             | 112(2)     |
| N(1)-C(a2)-C(m1)         | 125.83(13) | C(2)-C(5)-H(5b)                                                             | 108(3)     |
| N(1)-C(a2)-C(b2)         | 110.14(12) | ${ m H(5a)-C(5)-H(5b)}$                                                     | 113(3)     |
| C(m1)– $C(a2)$ – $C(b2)$ | 123.87(13) | C(2)-C(5)-H(5C)                                                             | 115(3)     |
| N(2)-C(a3)-C(m1)         | 125.58(13) | ${\rm H}({\rm 5a}){\rm -C}({\rm 5}){\rm -H}({\rm 5C})$                      | 109(3)     |
| N(2)-C(a3)-C(b3)         | 109.89(13) | H(5b)-C(5)-H(5C)                                                            | 100(3)     |
| C(m1)-C(a3)-C(b3)        | 124.45(13) | N(6)-C(6)-H(6a)                                                             | 112(2)     |
| N(2)-C(a4)-C(m2)         | 125.51(13) | N(6)-C(6)-H(6b)                                                             | 109(3)     |
| N(2)-C(a4)-C(b4)         | 109.60(13) | ${ m H}({ m 6a}){ m -C}({ m 6}){ m -H}({ m 6b})$                            | 115(3)     |
| C(m2)-C(a4)-C(b4)        | 124.63(13) | N(6)-C(6)-H(6C)                                                             | 110(2)     |
| N(3)-C(a5)-C(m2)         | 124.99(13) | ${ m H}({ m 6a}){ m -C}({ m 6}){ m -H}({ m 6C})$                            | 112(3)     |
| N(3)-C(a5)-C(b5)         | 109.55(13) | H(6b)-C(6)-H(6C)                                                            | 99(3)      |
| C(m2)-C(a5)-C(b5)        | 125.19(14) | $C(2\prime)-N(5\prime)-C(4\prime)$                                          | 105.8      |
| N(3)-C(a6)-C(m3)         | 125.99(13) | $C(2\prime)-N(5\prime)-Fe(1)$                                               | 133.34(12) |
| N(3)-C(a6)-C(b6)         | 110.11(13) | $C(4\prime)-N(5\prime)-Fe(1)$                                               | 120.85(12) |
| C(m3)-C(a6)-C(b6)        | 123.88(13) | $N(5\prime)-C(2\prime)-N(6\prime)$                                          | 111.4      |
| N(4)-C(a7)-C(m3)         | 124.99(12) | $N(5\prime)-C(2\prime)-C(5\prime)$                                          | 125.7      |
| N(4)-C(a7)-C(b7)         | 109.96(12) | $N(6\prime)-C(2\prime)-C(5\prime)$                                          | 122.9      |
| C(m3)-C(a7)-C(b7)        | 124.59(13) | $C(2\prime)-N(6\prime)-C(3\prime)$                                          | 107.1      |
| N(4)-C(a8)-C(m4)         | 125.37(12) | $C(2\prime)-N(6\prime)-C(6\prime)$                                          | 127.7      |
| N(4)-C(a8)-C(b8)         | 109.86(12) | $C(3\prime)-N(6\prime)-C(6\prime)$                                          | 125.1      |
| C(m4)-C(a8)-C(b8)        | 124.71(13) | $C(4\prime)-C(3\prime)-N(6\prime)$                                          | 106.4      |
| C(b2)-C(b1)-C(a1)        | 106.94(13) | $C(4\prime)-C(3\prime)-H(5b)$                                               | 49.9(15)   |
| C(b2)-C(b1)-H(b1)        | 126.5      | $N(6\prime)-C(3\prime)-H(5b)$                                               | 136.8(16)  |
| C(a1)-C(b1)-H(b1)        | 126.5      | $C(4\prime)-C(3\prime)-H(5C)$                                               | 63.8(19)   |
| C(b1)-C(b2)-C(a2)        | 106.86(13) | $N(6\prime)-C(3\prime)-H(5C)$                                               | 155.8(19)  |
| C(b1)-C(b2)-H(b2)        | 126.6      | $H(5b)-C(3\prime)-H(5C)$                                                    | 55(2)      |
| C(a2)-C(b2)-H(b2)        | 126.6      | $C(4\prime)-C(3\prime)-H(3\prime a)$                                        | 126.8      |
| C(b4)-C(b3)-C(a3)        | 107.10(13) | $N(6\prime)-C(3\prime)-H(3\prime a)$                                        | 126.8      |
| C(b4)-C(b3)-H(b3)        | 126.4      | $H(5b)-C(3\prime)-H(3\prime a)$                                             | 85.9       |
| C(a3)-C(b3)-H(b3)        | 126.4      | $\mathrm{H}(5\mathrm{C})\mathrm{-C}(3\prime)\mathrm{-H}(3\prime\mathrm{a})$ | 66.9       |
| C(b3)-C(b4)-C(a4)        | 107.07(13) | $C(3\prime)$ – $C(4\prime)$ – $N(5\prime)$                                  | 109.3      |
| C(b3)-C(b4)-H(b4)        | 126.5      | $\rm C(3\prime){-}\rm C(4\prime){-}\rm H(5a)$                               | 129.4(19)  |

| angle                                 | degree     | angle                                          | degree    |
|---------------------------------------|------------|------------------------------------------------|-----------|
| C(a4)-C(b4)-H(b4)                     | 126.5      | $N(5\prime)-C(4\prime)-H(5a)$                  | 116.1(19) |
| $\rm C(b6)–\rm C(b5)–\rm C(a5)$       | 107.23(13) | $C(3\prime)-C(4\prime)-H(5b)$                  | 72.0(19)  |
| $\rm C(b6)–\rm C(b5)–\rm H(b5)$       | 126.4      | $N(5\prime)-C(4\prime)-H(5b)$                  | 141(2)    |
| $\rm C(a5)\text{-}C(b5)\text{-}H(b5)$ | 126.4      | ${ m H(5a)-C(4\prime)-H(5b)}$                  | 86(3)     |
| C(b5)-C(b6)-C(a6)                     | 107.03(13) | $C(3\prime)$ – $C(4\prime)$ – $H(5C)$          | 52.6(17)  |
| C(b5)-C(b6)-H(b6)                     | 126.5      | $ m N(5\prime)- m C(4\prime)- m H(5C)$         | 152.2(17) |
| C(a6)-C(b6)-H(b6)                     | 126.5      | $H(5a)-C(4\prime)-H(5C)$                       | 77(2)     |
| C(b8)-C(b7)-C(a7)                     | 106.75(12) | $H(5b)-C(4\prime)-H(5C)$                       | 60(2)     |
| C(b8)-C(b7)-H(b7)                     | 126.6      | $C(3\prime)-C(4\prime)-H(4\prime a)$           | 125.4     |
| C(a7)-C(b7)-H(b7)                     | 126.6      | $N(5\prime)-C(4\prime)-H(4\prime a)$           | 125.4     |
| C(b7)-C(b8)-C(a8)                     | 107.23(13) | $\rm H(5b){-}C(4\prime){-}H(4\prime a)$        | 66.3      |
| C(b7)-C(b8)-H(b8)                     | 126.4      | $H(5C)-C(4\prime)-H(4\prime a)$                | 76.1      |
| C(a8)-C(b8)-H(b8)                     | 126.4      | $\rm C(2\prime){-}C(5\prime){-}H(5\prime a)$   | 109.5     |
| C(a3)-C(m1)-C(a2)                     | 123.09(13) | $C(2\prime)-C(5\prime)-H(5\prime b)$           | 109.5     |
| C(a3)-C(m1)-C(11)                     | 119.13(12) | $H(5\prime a)-C(5\prime)-H(5\prime b)$         | 109.5     |
| C(a2)-C(m1)-C(11)                     | 117.78(13) | $C(2\prime)-C(5\prime)-H(5\prime C)$           | 109.5     |
| C(a4)-C(m2)-C(a5)                     | 123.25(14) | $H(5\prime a)-C(5\prime)-H(5\prime C)$         | 109.5     |
| C(a4)-C(m2)-C(21)                     | 117.76(13) | $\rm H(5\prime b){-}C(5\prime){-}H(5\prime C)$ | 109.5     |
| C(a5)-C(m2)-C(21)                     | 118.75(13) | $N(6\prime)-C(6\prime)-H(6b)$                  | 120(4)    |
| C(a7)-C(m3)-C(a6)                     | 123.71(13) | $ m N(6\prime)- m C(6\prime)- m H(6\prime a)$  | 109.5     |
| C(a7)-C(m3)-C(31)                     | 119.28(12) | $\rm H(6b){-}C(6\prime){-}H(6\prime a)$        | 115.5     |
| C(a6)-C(m3)-C(31)                     | 116.74(12) | $N(6\prime)-C(6\prime)-H(6\prime b)$           | 109.5     |
| C(a8)-C(m4)-C(a1)                     | 122.68(13) | $H(6b)-C(6\prime)-H(6\prime b)$                | 90.9      |
| C(a8)-C(m4)-C(41)                     | 118.24(12) | H(6ta)-C(6t)-H(6tb)                            | 109.5     |
| C(a1)-C(m4)-C(41)                     | 119.03(13) | $N(6\prime)-C(6\prime)-H(6\prime C)$           | 109.5     |
| C(12)-C(11)-C(16)                     | 118.66(14) | $H(6\prime a)-C(6\prime)-H(6\prime C)$         | 109.5     |
| C(12)-C(11)-C(m1)                     | 118.44(13) | $H(6\prime b)-C(6\prime)-H(6\prime C)$         | 109.5     |
| C(16)-C(11)-C(m1)                     | 122.88(14) | C(56)-C(51)-C(55)                              | 120.0     |
| C(11)-C(12)-C(13)                     | 121.24(15) | C(56)-C(51)-H(51a)                             | 120.0     |
| C(11)-C(12)-H(12)                     | 119.4      | C(55)-C(51)-H(51a)                             | 120.0     |
| C(13)-C(12)-H(12)                     | 119.4      | C(52)-C(56)-C(51)                              | 120.0     |
| C(14)-C(13)-C(12)                     | 119.31(16) | C(52)-C(56)-H(56a)                             | 120.0     |
| C(14)-C(13)-H(13)                     | 120.3      | C(51)-C(56)-H(56a)                             | 120.0     |
| C(12)-C(13)-H(13)                     | 120.3      | C(56)-C(52)-C(54)                              | 120.0     |

Table S5. Continued

| angle             | degree     | angle               | degree    |
|-------------------|------------|---------------------|-----------|
| C(13)-C(14)-C(15) | 120.24(14) | C(56)-C(52)-H(52a)  | 120.0     |
| C(13)-C(14)-H(14) | 119.9      | C(54)-C(52)-H(52a)  | 120.0     |
| C(15)-C(14)-H(14) | 119.9      | C(53)-C(54)-C(52)   | 120.0     |
| C(14)-C(15)-C(16) | 120.19(14) | C(53)-C(54)-H(54a)  | 120.0     |
| C(14)-C(15)-H(15) | 119.9      | C(52)-C(54)-H(54a)  | 120.0     |
| C(16)-C(15)-H(15) | 119.9      | C(54)-C(53)-C(55)   | 120.0     |
| C(11)-C(16)-C(15) | 120.33(15) | C(54)-C(53)-H(53a)  | 120.0     |
| C(11)-C(16)-H(16) | 119.8      | C(55)-C(53)-H(53a)  | 120.0     |
| C(15)-C(16)-H(16) | 119.8      | C(53)-C(55)-C(51)   | 120.0     |
| C(22)-C(21)-C(26) | 118.16(15) | C(53)-C(55)-C(57)   | 117.6(5)  |
| C(22)-C(21)-C(m2) | 121.03(14) | C(51)-C(55)-C(57)   | 122.4(5)  |
| C(26)-C(21)-C(m2) | 120.79(15) | C(55)-C(57)-H(57a)  | 109.5     |
| C(21)-C(22)-C(23) | 121.19(17) | C(55)-C(57)-H(57b)  | 109.5     |
| C(21)-C(22)-H(22) | 119.4      | H(57a)-C(57)-H(57b) | 109.5     |
| C(23)-C(22)-H(22) | 119.4      | C(55)-C(57)-H(57C)  | 109.5     |
| C(24)-C(23)-C(22) | 119.90(18) | H(57a)-C(57)-H(57C) | 109.5     |
| C(24)-C(23)-H(23) | 120.0      | H(57b)-C(57)-H(57C) | 109.5     |
| C(22)-C(23)-H(23) | 120.0      | C(60)-C(61)-C(62)   | 120.0     |
| C(25)-C(24)-C(23) | 119.64(17) | C(71)-C(70)-C(72)#2 | 105(2)    |
| C(25)-C(24)-H(24) | 120.2      | C(71)-C(70)-C(76)   | 56.2(17)  |
| C(23)-C(24)-H(24) | 120.2      | C(72)#2-C(70)-C(76) | 161.3(15) |
| C(24)-C(25)-C(26) | 120.68(18) | C(72)#2-C(70)-C(72) | 77.2(11)  |
| C(24)-C(25)-H(25) | 119.7      | C(76)-C(70)-C(72)   | 84.1(8)   |
| C(26)-C(25)-H(25) | 119.7      | C(70)-C(71)-C(72)   | 139(2)    |
| C(25)-C(26)-C(21) | 120.42(18) | C(70)-C(71)-C(76)   | 101(2)    |
| C(25)-C(26)-H(26) | 119.8      | C(72)-C(71)-C(76)   | 120.0     |
| C(21)-C(26)-H(26) | 119.8      | C(70)-C(71)-C(72)#2 | 52.8(16)  |
| C(36)-C(31)-C(32) | 118.78(13) | C(72)-C(71)-C(72)#2 | 86.4(10)  |
| C(36)-C(31)-C(m3) | 120.58(13) | C(76)-C(71)-C(72)#2 | 153.4(11) |
| C(32)-C(31)-C(m3) | 120.50(13) | C(73)-C(72)-C(71)   | 120.0     |
| C(31)-C(32)-C(33) | 120.68(15) | C(73)-C(72)-C(70)#2 | 124.5(10) |
| C(31)-C(32)-H(32) | 119.7      | C(71)-C(72)-C(70)#2 | 115.5(10) |
| C(33)-C(32)-H(32) | 119.7      | C(73)-C(72)-C(71)#2 | 146.2(8)  |
| C(34)-C(33)-C(32) | 119.83(15) | C(71)-C(72)-C(71)#2 | 93.6(8)   |

Table S5. Continued

| angle             | degree     | angle               | degree    |
|-------------------|------------|---------------------|-----------|
| C(34)-C(33)-H(33) | 120.1      | C(73)-C(72)-C(70)   | 132.7(7)  |
| C(32)-C(33)-H(33) | 120.1      | C(70)#2-C(72)-C(70) | 102.8(10) |
| C(33)-C(34)-C(35) | 120.04(14) | C(71)#2-C(72)-C(70) | 80.7(7)   |
| C(33)-C(34)-H(34) | 120.0      | C(72)-C(73)-C(74)   | 120.0     |
| C(35)-C(34)-H(34) | 120.0      | C(73)-C(74)-C(75)   | 120.0     |
| C(34)-C(35)-C(36) | 119.86(15) | C(76)-C(75)-C(74)   | 120.0     |
| C(34)-C(35)-H(35) | 120.1      | C(75)-C(76)-C(71)   | 120.0     |
| C(36)-C(35)-H(35) | 120.1      | C(75)-C(76)-C(70)   | 142.9(7)  |
| C(31)-C(36)-C(35) | 120.71(14) |                     |           |
| C(31)-C(36)-H(36) | 119.6      |                     |           |

Table S5. Continued

| atom  | U <sub>11</sub> | $U_{22}$  | U <sub>33</sub> | $U_{23}$   | U <sub>13</sub> | U <sub>12</sub> |
|-------|-----------------|-----------|-----------------|------------|-----------------|-----------------|
| Fe(1) | 0.0192(1)       | 0.0129(1) | 0.0173(1)       | -0.0010(1) | 0.0049(1)       | -0.0019(1)      |
| N(1)  | 0.0177(5)       | 0.0174(5) | 0.0199(5)       | -0.0031(4) | 0.0030(4)       | -0.0020(4)      |
| N(2)  | 0.0224(5)       | 0.0158(5) | 0.0240(6)       | -0.0028(4) | 0.0093(5)       | -0.0044(4)      |
| N(3)  | 0.0236(6)       | 0.0151(5) | 0.0230(6)       | -0.0024(4) | 0.0096(5)       | -0.0041(4)      |
| N(4)  | 0.0188(5)       | 0.0155(5) | 0.0196(5)       | -0.0017(4) | 0.0037(4)       | -0.0005(4)      |
| C(A1) | 0.0172(6)       | 0.0209(6) | 0.0223(6)       | -0.0038(5) | 0.0053(5)       | -0.0021(5)      |
| C(A2) | 0.0195(6)       | 0.0189(6) | 0.0189(6)       | -0.0033(5) | 0.0025(5)       | -0.0007(5)      |
| C(A3) | 0.0252(7)       | 0.0158(6) | 0.0228(6)       | -0.0028(5) | 0.0073(5)       | -0.0035(5)      |
| C(A4) | 0.0248(7)       | 0.0183(6) | 0.0280(7)       | -0.0047(5) | 0.0098(6)       | -0.0062(5)      |
| C(A5) | 0.0248(7)       | 0.0185(6) | 0.0261(7)       | -0.0016(5) | 0.0121(6)       | -0.0049(5)      |
| C(A6) | 0.0272(7)       | 0.0151(6) | 0.0209(6)       | -0.0007(5) | 0.0097(5)       | -0.0023(5)      |
| C(A7) | 0.0223(6)       | 0.0140(6) | 0.0182(6)       | -0.0010(5) | 0.0023(5)       | 0.0000(5)       |
| C(A8) | 0.0183(6)       | 0.0159(6) | 0.0235(6)       | -0.0023(5) | 0.0034(5)       | -0.0009(5)      |
| C(B1) | 0.0209(6)       | 0.0269(7) | 0.0263(7)       | -0.0067(6) | 0.0081(6)       | -0.0044(5)      |
| C(B2) | 0.0220(6)       | 0.0258(7) | 0.0244(7)       | -0.0074(6) | 0.0061(5)       | -0.0019(5)      |
| C(B3) | 0.0301(7)       | 0.0174(6) | 0.0325(8)       | -0.0066(6) | 0.0114(6)       | -0.0070(6)      |
| C(B4) | 0.0286(7)       | 0.0205(7) | 0.0369(8)       | -0.0075(6) | 0.0136(7)       | -0.0091(6)      |
| C(B5) | 0.0266(7)       | 0.0219(7) | 0.0291(7)       | -0.0032(6) | 0.0142(6)       | -0.0041(6)      |
| C(B6) | 0.0290(7)       | 0.0199(7) | 0.0241(7)       | -0.0021(5) | 0.0140(6)       | -0.0030(5)      |
| C(B7) | 0.0239(7)       | 0.0173(6) | 0.0233(6)       | -0.0041(5) | 0.0020(5)       | -0.0017(5)      |
| C(B8) | 0.0204(6)       | 0.0180(6) | 0.0282(7)       | -0.0045(5) | 0.0027(5)       | -0.0021(5)      |
| C(M1) | 0.0232(6)       | 0.0157(6) | 0.0201(6)       | -0.0021(5) | 0.0039(5)       | -0.0011(5)      |
| C(M2) | 0.0240(7)       | 0.0203(7) | 0.0276(7)       | -0.0035(5) | 0.0102(6)       | -0.0065(5)      |
| C(M3) | 0.0265(7)       | 0.0142(6) | 0.0189(6)       | -0.0002(5) | 0.0058(5)       | -0.0002(5)      |
| C(M4) | 0.0181(6)       | 0.0190(6) | 0.0250(7)       | -0.0024(5) | 0.0045(5)       | -0.0026(5)      |
| C(11) | 0.0234(6)       | 0.0170(6) | 0.0249(7)       | -0.0039(5) | 0.0083(5)       | -0.0029(5)      |
| C(12) | 0.0293(8)       | 0.0238(7) | 0.0287(7)       | -0.0062(6) | 0.0028(6)       | 0.0014(6)       |
| C(13) | 0.0283(7)       | 0.0248(7) | 0.0360(8)       | -0.0027(6) | 0.0071(7)       | 0.0048(6)       |
| C(14) | 0.0271(7)       | 0.0201(7) | 0.0361(8)       | -0.0068(6) | 0.0147(6)       | -0.0015(6)      |
| C(15) | 0.0313(8)       | 0.0233(7) | 0.0264(7)       | -0.0076(6) | 0.0091(6)       | -0.0041(6)      |
| C(16) | 0.0281(7)       | 0.0199(7) | 0.0248(7)       | -0.0040(5) | 0.0065(6)       | -0.0025(5)      |
| C(21) | 0.0253(7)       | 0.0206(7) | 0.0371(8)       | -0.0067(6) | 0.0143(6)       | -0.0068(6)      |
| C(22) | 0.0275(7)       | 0.0225(7) | 0.0395(9)       | -0.0063(6) | 0.0121(7)       | -0.0026(6)      |
| C(23) | 0.0258(8)       | 0.0256(8) | 0.0530(11)      | -0.0101(7) | 0.0097(7)       | -0.0033(6)      |

**Table S6.** Anisotropic Displacement Parameters (Å<sup>2</sup>) for  $[Fe(TPP)(CO)(1,2-DiMeIm)] \cdot C_7 H_8^a$ 

| atom  | $U_{11}$   | $U_{22}$   | $U_{33}$   | $U_{23}$   | $U_{13}$   | $U_{12}$    |
|-------|------------|------------|------------|------------|------------|-------------|
| C(24) | 0.0280(8)  | 0.0329(9)  | 0.0685(14) | -0.0099(9) | 0.0207(9)  | -0.0101(7)  |
| C(25) | 0.0400(10) | 0.0393(10) | 0.0558(12) | -0.0037(9) | 0.0276(9)  | -0.0135(8)  |
| C(26) | 0.0358(9)  | 0.0351(9)  | 0.0389(9)  | -0.0047(7) | 0.0178(8)  | -0.0133(7)  |
| C(31) | 0.0245(6)  | 0.0168(6)  | 0.0203(6)  | -0.0026(5) | 0.0071(5)  | -0.0025(5)  |
| C(32) | 0.0367(8)  | 0.0215(7)  | 0.0227(7)  | 0.0024(5)  | 0.0087(6)  | -0.0002(6)  |
| C(33) | 0.0397(9)  | 0.0322(8)  | 0.0201(7)  | -0.0025(6) | 0.0110(6)  | -0.0061(7)  |
| C(34) | 0.0295(7)  | 0.0289(8)  | 0.0276(7)  | -0.0116(6) | 0.0122(6)  | -0.0075(6)  |
| C(35) | 0.0298(7)  | 0.0197(7)  | 0.0304(8)  | -0.0063(6) | 0.0075(6)  | 0.0000(6)   |
| C(36) | 0.0305(7)  | 0.0186(6)  | 0.0209(6)  | -0.0019(5) | 0.0057(6)  | -0.0015(5)  |
| C(41) | 0.0206(6)  | 0.0210(7)  | 0.0271(7)  | -0.0060(5) | 0.0071(5)  | -0.0054(5)  |
| C(42) | 0.0280(8)  | 0.0238(7)  | 0.0404(9)  | -0.0013(6) | 0.0107(7)  | -0.0036(6)  |
| C(43) | 0.0377(9)  | 0.0258(8)  | 0.0423(9)  | -0.0020(7) | 0.0154(8)  | -0.0098(7)  |
| C(44) | 0.0325(8)  | 0.0366(9)  | 0.0358(9)  | -0.0112(7) | 0.0152(7)  | -0.0163(7)  |
| C(45) | 0.0215(7)  | 0.0363(9)  | 0.0410(9)  | -0.0082(7) | 0.0109(7)  | -0.0067(6)  |
| C(46) | 0.0216(7)  | 0.0270(8)  | 0.0360(8)  | -0.0052(6) | 0.0084(6)  | -0.0037(6)  |
| C(1)  | 0.0207(6)  | 0.0224(7)  | 0.0246(7)  | -0.0002(5) | 0.0081(5)  | -0.0001(5)  |
| N(5)  | 0.0233(12) | 0.0183(10) | 0.0221(10) | -0.0005(8) | 0.0072(9)  | 0.0033(9)   |
| C(2)  | 0.0258(12) | 0.0224(11) | 0.0205(10) | -0.0024(9) | 0.0017(9)  | 0.0049(9)   |
| N(6)  | 0.0376(17) | 0.025(3)   | 0.022(2)   | 0.0098(19) | 0.0026(15) | 0.0080(14)  |
| C(3)  | 0.0432(16) | 0.0286(13) | 0.0294(13) | 0.0083(11) | 0.0024(12) | -0.0064(12) |
| C(4)  | 0.0307(14) | 0.0260(13) | 0.0264(12) | 0.0062(10) | 0.0036(10) | -0.0090(11) |
| C(5)  | 0.0205(13) | 0.0443(18) | 0.0341(15) | 0.0032(13) | 0.0043(13) | 0.0071(14)  |
| C(6)  | 0.0450(15) | 0.0401(16) | 0.0447(15) | 0.0172(12) | 0.0003(14) | 0.0108(13)  |
| N(5') | 0.0212(19) | 0.0180(16) | 0.0208(16) | 0.0009(12) | 0.0129(15) | 0.0067(14)  |
| C(2') | 0.030(2)   | 0.0209(18) | 0.0240(18) | 0.0048(14) | 0.0115(16) | 0.0016(15)  |
| N(6') | 0.036(3)   | 0.030(5)   | 0.033(5)   | 0.005(4)   | 0.005(3)   | -0.003(3)   |
| C(3') | 0.029(2)   | 0.038(2)   | 0.040(2)   | 0.0101(18) | 0.0031(17) | 0.0042(17)  |
| C(4') | 0.0143(18) | 0.0243(19) | 0.032(2)   | 0.0032(16) | 0.0072(17) | 0.0033(17)  |
| C(5') | 0.028(2)   | 0.037(3)   | 0.037(3)   | 0.016(2)   | 0.0094(19) | -0.0034(19) |
| C(6') | 0.0450(15) | 0.0401(16) | 0.0447(15) | 0.0172(12) | 0.0003(14) | 0.0108(13)  |
| O(1)  | 0.0550(9)  | 0.0480(8)  | 0.0419(8)  | 0.0231(7)  | 0.0155(7)  | 0.0192(7)   |

Table S6. Continued

<sup>*a*</sup>The estimated standard deviations of the least significant digits are given in parentheses. The anisotropic displacement factor exponent takes the form:  $-2 \pi [h^2 U_{11} + ... + 2 h k a^* b^* U_{12}]$ .

| atom  | x        | y          | z        | U(eq)    |
|-------|----------|------------|----------|----------|
| H(B1  | 0.0494   | 0.1951     | 0.8062   | 0.029    |
| H(B2  | 0.1314   | 0.2897     | 0.8411   | 0.029    |
| H(B3  | 0.4796   | 0.3822     | 0.7833   | 0.031    |
| H(B4  | 0.6330   | 0.3426     | 0.7303   | 0.033    |
| H(B5  | 0.6870   | 0.1631     | 0.5177   | 0.030    |
| H(B6  | 0.5616   | 0.0993     | 0.4170   | 0.028    |
| H(B7  | 0.1667   | 0.0450     | 0.3997   | 0.026    |
| H(B8  | 0.0519   | 0.0556     | 0.5156   | 0.027    |
| H(12) | 0.1647   | 0.3828     | 0.6916   | 0.033    |
| H(13) | 0.1208   | 0.4705     | 0.7480   | 0.036    |
| H(14) | 0.2082   | 0.5025     | 0.8955   | 0.032    |
| H(15) | 0.3365   | 0.4467     | 0.9866   | 0.026(5) |
| H(16) | 0.3828   | 0.3599     | 0.9287   | 0.029    |
| H(22) | 0.7552   | 0.2515     | 0.7783   | 0.035    |
| H(23) | 0.9252   | 0.2818     | 0.7834   | 0.041    |
| H(24) | 0.9800   | 0.3037     | 0.6436   | 0.050    |
| H(25) | 0.8635   | 0.2976     | 0.5001   | 0.051    |
| H(26) | 0.6931   | 0.2687     | 0.4943   | 0.042    |
| H(32) | 0.3276   | 0.1179     | 0.2649   | 0.032    |
| H(33) | 0.3571   | 0.0571     | 0.1454   | 0.036    |
| H(34) | 0.4183   | -0.0345    | 0.1827   | 0.033    |
| H(35) | 0.4383   | -0.0676    | 0.3376   | 0.032    |
| H(36) | 0.4046   | -0.0075    | 0.4562   | 0.028    |
| H(42) | 0.1145   | 0.0322     | 0.7333   | 0.036    |
| H(43) | -0.0230  | -0.0179    | 0.7751   | 0.041    |
| H(44) | -0.1888  | 0.0217     | 0.7497   | 0.041    |
| H(45) | -0.2176  | 0.1112     | 0.6814   | 0.039    |
| H(46) | -0.0807  | 0.1625     | 0.6423   | 0.033    |
| H(3A) | 0.3487   | 0.3529     | 0.3926   | 0.041    |
| H(4A) | 0.4438   | 0.2851     | 0.5089   | 0.034    |
| H(5A) | 0.112(3) | 0.2239(16) | 0.553(3) | 0.053    |
| H(5B) | 0.085(3) | 0.2221(18) | 0.439(3) | 0.053    |
| H(5C) | 0.056(3) | 0.2672(17) | 0.477(3) | 0.053    |
| H(6A) | 0.081(3) | 0.3108(16) | 0.307(3) | 0.053    |

**Table S7.** Hydrogen Atom Coordinates and Equivalent Isotropic Displacement Parameters(Ų) for  $[Fe(TPP)(CO)(1,2-DiMeIm)] \cdot C_7 H_8^a$ 

| atom   | x        | y          | z        | $U(\mathrm{eq})$ |
|--------|----------|------------|----------|------------------|
| H(6B)  | 0.157(3) | 0.3667(18) | 0.323(3) | 0.053            |
| H(6C)  | 0.092(3) | 0.3644(16) | 0.387(3) | 0.053            |
| H(3'A) | 0.0460   | 0.2895     | 0.4012   | 0.044            |
| H(4'A) | 0.1112   | 0.2181     | 0.5234   | 0.028            |
| H(5'A) | 0.4403   | 0.2770     | 0.4781   | 0.050            |
| H(5B)  | 0.4148   | 0.3358     | 0.5234   | 0.050            |
| H(5C)  | 0.3952   | 0.3288     | 0.4112   | 0.050            |
| H(6'A) | 0.2585   | 0.3583     | 0.3182   | 0.067            |
| H(6'B) | 0.2001   | 0.3952     | 0.3842   | 0.067            |
| H(6C)  | 0.1345   | 0.3580     | 0.3007   | 0.067            |
| H(51A) | 0.2692   | 0.1140     | -0.0674  | 0.078            |
| H(56A) | 0.3997   | 0.0492     | -0.0815  | 0.073            |
| H(52A) | 0.3803   | -0.0465    | -0.0472  | 0.070            |
| H(54A) | 0.2303   | -0.0774    | 0.0014   | 0.115            |
| H(53A) | 0.0998   | -0.0126    | 0.0155   | 0.107            |
| H(57A) | 0.0301   | 0.0750     | 0.0055   | 0.144            |
| H(57B) | 0.0602   | 0.1159     | -0.0729  | 0.144            |
| H(57C) | 0.1131   | 0.1245     | 0.0358   | 0.144            |

Table S7. Continued

<sup>*a*</sup>U(eq) is defined as one third of the trace of the orthogonalized  $\mathbf{U}_{ij}$  tensor the estimated standard deviations of the least significant digits are given in parentheses.

# **Supporting Information**

| formula                                 | $C_{56}H_{34}FeN_6O$                       |
|-----------------------------------------|--------------------------------------------|
| FW, amu                                 | 862.74                                     |
| $a, \mathrm{\AA}$                       | 13.1961(2)                                 |
| b, Å                                    | 23.4514(3)                                 |
| $c, \mathrm{\AA}$                       | 14.2630(2)                                 |
| $\beta, \deg$                           | 105.1980(10)                               |
| $V, Å^3$                                | 4259.55(10)                                |
| space group                             | P2(1)/n                                    |
| Z                                       | 4                                          |
| $D_c, g/cm^3$                           | 1.345                                      |
| F(000)                                  | 1784                                       |
| $\mu, \mathrm{mm}^{-1}$                 | 0.404                                      |
| crystal dimensions, mm                  | $0.66\times0.39\times0.27$                 |
| radiation                               | MoK $\alpha$ , $\bar{\lambda} = 0.71073$ Å |
| temperature, K                          | 100(2)                                     |
| diffractometer                          | Bruker Apex CCD                            |
| $\theta$ range for collected data, deg  | 1.72 - 32.50                               |
| index range                             | $-19 \le h \le 19$                         |
|                                         | $-35 \le k \le 35$                         |
|                                         | $-21 \le l \le 21$                         |
| total data collected                    | 66278                                      |
| absorption correction                   | Semi-empirical fromequiv                   |
| relative transmission coefficients (I)  | 0.8987 and $0.7759$                        |
| unique data                             | 15413 ( $R_{\rm int} = 0.037$ )            |
| unique observed data $[I > 2\sigma(I)]$ | 12118                                      |
| refinement method                       | Full-matrix least-squares on $F^2$         |
| data/restraints/parameters              | 15413/0/623                                |
| goodness-of-fit (pased on $F^2$ )       | 1.028                                      |
| final R indices $[I > 2\sigma(I)]$      | $R_1 = 0.0446, wR_2 = 0.1139$              |
| final $R$ indices (all data)            | $R_1 = 0.0618, wR_2 = 0.1252$              |

**Table S8.** Complete Crystallographic Details for  $[Fe(TPP)(CO)(2-MeHIm)] \cdot C_7H_8$ 

| atom  | x           | y          | z           | $U(\mathrm{eq})$ |
|-------|-------------|------------|-------------|------------------|
| Fe    | 0.34102(1)  | 0.20289(1) | 0.60944(1)  | 0.0128(1)        |
| N(1)  | 0.23397(8)  | 0.22432(5) | 0.67805(8)  | 0.0148(2)        |
| N(2)  | 0.42934(8)  | 0.26923(5) | 0.66914(8)  | 0.0148(2)        |
| N(3)  | 0.44757(8)  | 0.18138(5) | 0.53965(8)  | 0.0149(2)        |
| N(4)  | 0.24956(8)  | 0.13898(5) | 0.54669(8)  | 0.0143(2)        |
| C(a1) | 0.15577(10) | 0.18982(6) | 0.69436(9)  | 0.0162(2)        |
| C(a2) | 0.23327(10) | 0.27259(5) | 0.73185(9)  | 0.0163(2)        |
| C(a3) | 0.39787(10) | 0.31471(5) | 0.71571(9)  | 0.0157(2)        |
| C(a4) | 0.52989(10) | 0.28124(6) | 0.66470(10) | 0.0162(2)        |
| C(a5) | 0.54904(10) | 0.20141(5) | 0.55793(9)  | 0.0160(2)        |
| C(a6) | 0.44005(10) | 0.13766(5) | 0.47350(9)  | 0.0153(2)        |
| C(a7) | 0.26231(10) | 0.10527(5) | 0.47162(9)  | 0.0149(2)        |
| C(a8) | 0.16067(10) | 0.11909(5) | 0.56900(9)  | 0.0151(2)        |
| C(b1) | 0.10837(11) | 0.21632(6) | 0.76358(10) | 0.0202(3)        |
| C(b2) | 0.15378(11) | 0.26836(6) | 0.78411(10) | 0.0209(3)        |
| C(b3) | 0.48007(11) | 0.35702(6) | 0.73911(10) | 0.0194(2)        |
| C(b4) | 0.56227(11) | 0.33585(6) | 0.70989(11) | 0.0200(2)        |
| C(b5) | 0.60664(10) | 0.16867(6) | 0.50338(10) | 0.0183(2)        |
| C(b6) | 0.53881(10) | 0.13003(6) | 0.44993(10) | 0.0177(2)        |
| C(b7) | 0.17527(10) | 0.06663(5) | 0.44135(10) | 0.0168(2)        |
| C(b8) | 0.11304(10) | 0.07453(5) | 0.50233(10) | 0.0167(2)        |
| C(m1) | 0.30390(10) | 0.31797(5) | 0.74268(9)  | 0.0165(2)        |
| C(m2) | 0.58927(10) | 0.24851(6) | 0.61657(10) | 0.0167(2)        |
| C(m3) | 0.35172(10) | 0.10350(5) | 0.43699(9)  | 0.0152(2)        |
| C(m4) | 0.11980(10) | 0.13984(5) | 0.64343(9)  | 0.0159(2)        |
| C(11) | 0.27646(10) | 0.37121(6) | 0.78822(10) | 0.0182(2)        |
| C(12) | 0.33044(12) | 0.38878(6) | 0.88115(11) | 0.0220(3)        |
| C(13) | 0.30108(13) | 0.43846(6) | 0.92042(11) | 0.0246(3)        |
| C(14) | 0.21827(12) | 0.47116(6) | 0.86756(12) | 0.0237(3)        |
| C(15) | 0.16292(12) | 0.45362(7) | 0.77580(13) | 0.0285(3)        |
| C(16) | 0.19175(12) | 0.40354(7) | 0.73678(12) | 0.0262(3)        |
| C(21) | 0.69883(11) | 0.26714(6) | 0.62212(11) | 0.0194(2)        |
| C(22) | 0.72703(13) | 0.28360(7) | 0.53846(12) | 0.0277(3)        |
| C(23) | 0.82934(14) | 0.30074(8) | 0.54352(15) | 0.0349(4)        |

**Table S9.** Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>) for  $[Fe(TPP)(CO)(2-MeHIm)] \cdot C_7 H_8^a$ 

| atom            | x            | y            | 2           | U(eq)      |
|-----------------|--------------|--------------|-------------|------------|
| C(24)           | 0.90389(13)  | 0.30218(7)   | 0.63189(15) | 0.0333(4)  |
| C(25)           | 0.87666(12)  | 0.28640(7)   | 0.71556(13) | 0.0285(3)  |
| C(26)           | 0.77465(11)  | 0.26908(6)   | 0.71114(11) | 0.0222(3)  |
| C(31)           | 0.35959(10)  | 0.05824(5)   | 0.36510(9)  | 0.0159(2)  |
| C(32)           | 0.39005(11)  | 0.00291(6)   | 0.39659(10) | 0.0197(2)  |
| C(33)           | 0.40615(12)  | -0.03844(6)  | 0.33168(11) | 0.0221(3)  |
| C(34)           | 0.38933(12)  | -0.02498(6)  | 0.23393(11) | 0.0221(3)  |
| C(35)           | 0.35577(13)  | 0.02932(6)   | 0.20120(11) | 0.0241(3)  |
| C(36)           | 0.34109(12)  | 0.07081(6)   | 0.26660(10) | 0.0213(3)  |
| C(41)           | 0.03196(10)  | 0.10846(6)   | 0.66815(10) | 0.0175(2)  |
| C(42)           | -0.06763(11) | 0.13295(6)   | 0.65320(11) | 0.0209(3)  |
| C(43)           | -0.14658(11) | 0.10449(7)   | 0.68266(11) | 0.0244(3)  |
| C(44)           | -0.12665(12) | 0.05170(7)   | 0.72802(11) | 0.0260(3)  |
| C(45)           | -0.02861(13) | 0.02699(7)   | 0.74152(12) | 0.0263(3)  |
| C(46)           | 0.05009(12)  | 0.05465(6)   | 0.71076(11) | 0.0227(3)  |
| C(1)            | 0.40501(10)  | 0.16115(6)   | 0.70817(10) | 0.0180(2)  |
| O(1)            | 0.45089(10)  | 0.13633(5)   | 0.77538(9)  | 0.0315(3)  |
| C(2)            | 0.17470(11)  | 0.27010(6)   | 0.44663(10) | 0.0211(3)  |
| $\mathrm{C}(3)$ | 0.27402(14)  | 0.33322(7)   | 0.39577(12) | 0.0299(3)  |
| C(4)            | 0.33531(12)  | 0.29777(6)   | 0.46188(11) | 0.0241(3)  |
| N(5)            | 0.27289(9)   | 0.25833(5)   | 0.49439(8)  | 0.0179(2)  |
| $\mathrm{C}(5)$ | 0.07710(12)  | 0.24058(7)   | 0.45239(12) | 0.0284(3)  |
| N(6)            | 0.17295(11)  | 0.31523(6)   | 0.38669(10) | 0.0273(3)  |
| C(51)           | 0.0559(3)    | -0.02292(15) | 0.9895(3)   | 0.0653(14) |
| C(52)           | 0.1385(3)    | -0.03519(13) | 0.9490(3)   | 0.0785(19) |
| C(53)           | 0.2019(3)    | 0.00854(19)  | 0.9308(3)   | 0.095(3)   |
| C(55)           | 0.1826(3)    | 0.06455(16)  | 0.9531(3)   | 0.090(2)   |
| C(54)           | 0.1001(4)    | 0.07682(13)  | 0.9935(3)   | 0.0736(16) |
| C(56)           | 0.0367(3)    | 0.03309(18)  | 1.0117(3)   | 0.0742(19) |
| C(57)           | -0.0164(7)   | -0.0688(3)   | 1.0046(5)   | 0.082(2)   |
| C(61)           | 0.5277(3)    | -0.0285(3)   | 1.0176(4)   | 0.085(3)   |
| C(62)           | 0.5370(5)    | 0.0291(3)    | 0.9982(5)   | 0.134(7)   |
| C(63)           | 0.4475(7)    | 0.06180(18)  | 0.9616(4)   | 0.129(5)   |
| C(64)           | 0.3487(5)    | 0.0369(3)    | 0.9443(3)   | 0.153(6)   |

Table S9. Continued

| atom  | x          | y            | z         | $U(\mathrm{eq})$ |  |
|-------|------------|--------------|-----------|------------------|--|
| C(65) | 0.3394(3)  | -0.0207(3)   | 0.9637(3) | 0.081(2)         |  |
| C(66) | 0.4289(4)  | -0.05335(18) | 1.0003(3) | 0.079(2)         |  |
| C(67) | 0.2386(11) | -0.0437(7)   | 0.9490(8) | 0.142(5)         |  |

Table S9. Continued

<sup>*a*</sup>U(eq) is defined as one third of the trace of the orthogonalized  $\mathbf{U}_{ij}$  tensor. The estimated standard deviations of the least significant digits are given in parentheses.

| bond                | length (Å) | bond                        | length (Å) |
|---------------------|------------|-----------------------------|------------|
| Fe–C(1)             | 1.7410(14) | C(31)-C(36)                 | 1.3930(19) |
| ${ m Fe-N(1)}$      | 1.9825(11) | C(31)-C(32)                 | 1.3974(19) |
| Fe-N(4)             | 1.9843(11) | C(32)-C(33)                 | 1.3950(19) |
| Fe-N(3)             | 1.9891(11) | C(32)– $H(32)$              | 0.9500     |
| Fe-N(2)             | 1.9959(11) | C(33)-C(34)                 | 1.389(2)   |
| Fe-N(5)             | 2.1018(12) | C(33)– $H(33)$              | 0.9500     |
| m N(1)- m C(a2)     | 1.3689(16) | C(34)-C(35)                 | 1.388(2)   |
| N(1)– $C(a1)$       | 1.3782(17) | C(34)-H(34)                 | 0.9500     |
| N(2)-C(a4)          | 1.3740(17) | C(35)-C(36)                 | 1.3960(19) |
| N(2)– $C(a3)$       | 1.3769(16) | C(35)-H(35)                 | 0.9500     |
| m N(3)- m C(a5)     | 1.3778(16) | C(36)– $H(36)$              | 0.9500     |
| N(3)– $C(a6)$       | 1.3793(16) | C(41)-C(46)                 | 1.394(2)   |
| N(4)– $C(a8)$       | 1.3750(16) | C(41)-C(42)                 | 1.398(2)   |
| N(4)– $C(a7)$       | 1.3763(16) | C(42)-C(43)                 | 1.392(2)   |
| C(a1)-C(m4)         | 1.3950(18) | C(42)-H(42)                 | 0.9500     |
| C(a1)– $C(b1)$      | 1.4407(18) | C(43)-C(44)                 | 1.390(2)   |
| C(a2)-C(m1)         | 1.3962(18) | C(43) - H(43)               | 0.9500     |
| C(a2)– $C(b2)$      | 1.4408(19) | C(44)-C(45)                 | 1.384(2)   |
| C(a3)-C(m1)         | 1.3934(18) | C(44) - H(44)               | 0.9500     |
| C(a3)– $C(b3)$      | 1.4432(18) | C(45)-C(46)                 | 1.390(2)   |
| C(a4)– $C(m2)$      | 1.3987(19) | C(45)– $H(45)$              | 0.9500     |
| C(a4)-C(b4)         | 1.4470(18) | C(46)– $H(46)$              | 0.9500     |
| C(a5)-C(m2)         | 1.4031(18) | $\rm C(1)–O(1)$             | 1.1488(17) |
| C(a5)-C(b5)         | 1.4430(18) | m C(2)–N(5)                 | 1.3252(18) |
| C(a6)-C(m3)         | 1.3976(18) | m C(2)–N(6)                 | 1.3569(19) |
| C(a6)-C(b6)         | 1.4398(18) | ${ m C}(2){ m -}{ m C}(5)$  | 1.483(2)   |
| C(a7)-C(m3)         | 1.3941(18) | C(3)– $C(4)$                | 1.354(2)   |
| C(a7)-C(b7)         | 1.4375(17) | m C(3)–N(6)                 | 1.372(2)   |
| C(a8)– $C(m4)$      | 1.3983(18) | ${ m C}(3)	ext{-}{ m H}(3)$ | 0.9500     |
| C(a8)– $C(b8)$      | 1.4413(17) | C(4)– $N(5)$                | 1.3962(19) |
| C(b1)-C(b2)         | 1.3573(19) | C(4)– $H(4)$                | 0.9500     |
| $\rm C(b1){-}H(b1)$ | 0.9500     | C(5)– $H(5a)$               | 0.9800     |
| $\rm C(b2){-}H(b2)$ | 0.9500     | C(5)– $H(5b)$               | 0.9800     |
| C(b3)-C(b4)         | 1.354(2)   | m C(5)- m H(5c)             | 0.9800     |

Table S10. Bond Lengths for  $[\rm{Fe}(\rm{TPP})(\rm{CO})(2\text{-}MeHIm)] \cdot C_7 H_8{}^a$ 

| bond                                  | length (Å) | bond             | length (Å) |
|---------------------------------------|------------|------------------|------------|
| C(b3)– $H(b3)$                        | 0.9500     | m N(6)- m H(6)   | 0.79(3)    |
| C(b4)-H(b4)                           | 0.9500     | C(51)-C(56)#1)   | 1.242(8)   |
| C(b5)-C(b6)                           | 1.3587(19) | m C(51)- m C(52) | 1.3900     |
| $\rm C(b5)-H(b5)$                     | 0.9500     | m C(51)- m C(56) | 1.3900     |
| C(b6)-H(b6)                           | 0.9500     | m C(51)- m C(57) | 1.492(9)   |
| C(b7)-C(b8)                           | 1.3564(19) | m C(52)- m C(53) | 1.3900     |
| $\rm C(b7)-H(b7)$                     | 0.9500     | m C(53)– m C(55) | 1.3900     |
| C(b8)-H(b8)                           | 0.9500     | C(55)-C(54)      | 1.3900     |
| C(m1)-C(11)                           | 1.4952(18) | C(54)-C(57)#1)   | 1.127(9)   |
| C(m2)– $C(21)$                        | 1.4924(18) | C(54)– $C(56)$   | 1.3900     |
| C(m3)-C(31)                           | 1.4981(17) | C(56)-C(57)#1)   | 0.892(7)   |
| C(m4)-C(41)                           | 1.4913(18) | C(56)-C(51)#1)   | 1.242(7)   |
| C(11)-C(16)                           | 1.390(2)   | C(57)-C(56)#1)   | 0.892(8)   |
| C(11)-C(12)                           | 1.3924(19) | C(57)-C(54)#1)   | 1.127(11)  |
| C(12)-C(13)                           | 1.391(2)   | C(61)-C(62)#2)   | 0.824(9)   |
| C(12)– $H(12)$                        | 0.9500     | C(61)-C(63)#2)   | 0.869(12)  |
| C(13)-C(14)                           | 1.385(2)   | m C(61)- m C(62) | 1.3900     |
| C(13) - H(13)                         | 0.9500     | C(61)-C(64)#2)   | 1.591(9)   |
| C(14)-C(15)                           | 1.384(2)   | C(62)-C(66)#2)   | 0.722(7)   |
| C(14) - H(14)                         | 0.9500     | C(62)-C(61)#2)   | 0.824(9)   |
| C(15)-C(16)                           | 1.395(2)   | m C(62)- m C(63) | 1.3900     |
| $\rm C(15)–H(15)$                     | 0.9500     | C(62)-C(65)#2)   | 1.591(14)  |
| m C(16)- m H(16)                      | 0.9500     | C(62)-C(62)#2)   | 1.687(7)   |
| C(21)-C(22)                           | 1.394(2)   | C(63)-C(61)#2)   | 0.869(11)  |
| C(21)-C(26)                           | 1.396(2)   | m C(63)- m C(64) | 1.3900     |
| C(22)-C(23)                           | 1.392(2)   | C(63)-C(66)#2)   | 1.591(18)  |
| $\mathrm{C}(22)\mathrm{-H}(22)$       | 0.9500     | C(64)– $C(65)$   | 1.3900     |
| $\mathrm{C}(23)	ext{-}\mathrm{C}(24)$ | 1.381(3)   | C(64)-C(61)#2)   | 1.591(10)  |
| $\mathrm{C}(23)	ext{-}\mathrm{H}(23)$ | 0.9500     | m C(65)- m C(66) | 1.3900     |
| $\mathrm{C}(24)	ext{-}\mathrm{C}(25)$ | 1.384(3)   | m C(65)- m C(67) | 1.400(14)  |
| $\rm C(24)–H(24)$                     | 0.9500     | C(65)-C(62)#2)   | 1.591(9)   |
| m C(25)- m C(26)                      | 1.392(2)   | C(66)-C(62)#2)   | 0.722(7)   |
| $\rm C(25)-H(25)$                     | 0.9500     | C(66)-C(63)#2)   | 1.591(11)  |
| C(26)-H(26)                           | 0.9500     |                  |            |

Table S10. Continued

| angle                    | degree     | angle                         | degree     |
|--------------------------|------------|-------------------------------|------------|
| C(1)–Fe–N $(1)$          | 90.03(5)   | C(33)-C(32)-C(31)             | 120.88(13) |
| C(1)–Fe– $N(4)$          | 92.80(5)   | C(33)-C(32)-H(32)             | 119.6      |
| N(1)–Fe– $N(4)$          | 89.22(4)   | C(31)-C(32)-H(32)             | 119.6      |
| C(1)–Fe– $N(3)$          | 90.32(5)   | C(34)-C(33)-C(32)             | 119.73(13) |
| N(1)–Fe– $N(3)$          | 179.56(4)  | C(34)-C(33)-H(33)             | 120.1      |
| N(4)–Fe– $N(3)$          | 90.51(4)   | C(32)-C(33)-H(33)             | 120.1      |
| C(1)–Fe– $N(2)$          | 89.32(5)   | C(35)-C(34)-C(33)             | 119.93(13) |
| N(1)–Fe– $N(2)$          | 90.21(4)   | C(35)-C(34)-H(34)             | 120.0      |
| N(4)–Fe– $N(2)$          | 177.81(5)  | C(33)-C(34)-H(34)             | 120.0      |
| N(3)–Fe– $N(2)$          | 90.05(4)   | C(34)-C(35)-C(36)             | 120.17(13) |
| C(1)–Fe– $N(5)$          | 175.42(5)  | C(34)-C(35)-H(35)             | 119.9      |
| N(1)–Fe– $N(5)$          | 90.82(5)   | C(36)-C(35)-H(35)             | 119.9      |
| N(4)–Fe– $N(5)$          | 91.72(4)   | C(31)-C(36)-C(35)             | 120.54(13) |
| N(3)–Fe– $N(5)$          | 88.85(5)   | C(31)-C(36)-H(36)             | 119.7      |
| N(2)-Fe- $N(5)$          | 86.18(4)   | C(35)-C(36)-H(36)             | 119.7      |
| C(a2)-N(1)-C(a1)         | 105.99(11) | C(46)-C(41)-C(42)             | 119.04(13) |
| C(a2)– $N(1)$ – $Fe$     | 126.64(9)  | C(46)-C(41)-C(m4)             | 119.64(12) |
| C(a1)– $N(1)$ – $Fe$     | 126.61(9)  | C(42)-C(41)-C(m4)             | 121.26(12) |
| C(a4)– $N(2)$ – $C(a3)$  | 106.30(10) | C(43)-C(42)-C(41)             | 120.33(14) |
| C(a4)– $N(2)$ – $Fe$     | 127.08(9)  | C(43)-C(42)-H(42)             | 119.8      |
| C(a3)– $N(2)$ – $Fe$     | 126.40(9)  | C(41)-C(42)-H(42)             | 119.8      |
| C(a5)-N(3)-C(a6)         | 105.96(10) | C(44)-C(43)-C(42)             | 120.17(14) |
| C(a5)-N(3)-Fe            | 126.74(9)  | C(44)-C(43)-H(43)             | 119.9      |
| C(a6)-N(3)-Fe            | 126.68(9)  | C(42)-C(43)-H(43)             | 119.9      |
| C(a8)-N(4)-C(a7)         | 105.71(10) | C(45)-C(44)-C(43)             | 119.58(14) |
| C(a8)– $N(4)$ – $Fe$     | 127.36(8)  | C(45)-C(44)-H(44)             | 120.2      |
| C(a7)– $N(4)$ – $Fe$     | 126.93(9)  | C(43)-C(44)-H(44)             | 120.2      |
| N(1)-C(a1)-C(m4)         | 124.96(12) | C(44)-C(45)-C(46)             | 120.61(15) |
| N(1)-C(a1)-C(b1)         | 109.96(11) | C(44)-C(45)-H(45)             | 119.7      |
| C(m4)-C(a1)-C(b1)        | 124.72(12) | C(46)-C(45)-H(45)             | 119.7      |
| N(1)-C(a2)-C(m1)         | 126.15(12) | C(45)-C(46)-C(41)             | 120.22(14) |
| N(1)-C(a2)-C(b2)         | 110.23(11) | C(45)-C(46)-H(46)             | 119.9      |
| C(m1)– $C(a2)$ – $C(b2)$ | 123.41(12) | C(41)-C(46)-H(46)             | 119.9      |
| N(2)-C(a3)-C(m1)         | 125.34(12) | ${ m O}(1){ m -C}(1){ m -Fe}$ | 175.96(13) |

Table S11. Bond Angles for  $[\rm Fe(TPP)(CO)(2\text{-}MeHIm)] \cdot C_7 H_8{}^a$ 

| angle                    | degree     | angle                               | degree     |
|--------------------------|------------|-------------------------------------|------------|
| N(2)-C(a3)-C(b3)         | 109.91(11) | N(5)-C(2)-N(6)                      | 109.83(13) |
| C(m1)-C(a3)-C(b3)        | 124.60(12) | m N(5)- m C(2)- m C(5)              | 128.34(13) |
| N(2)-C(a4)-C(m2)         | 125.61(12) | m N(6)- m C(2)- m C(5)              | 121.82(13) |
| N(2)-C(a4)-C(b4)         | 109.68(11) | C(4)-C(3)-N(6)                      | 105.38(14) |
| C(m2)-C(a4)-C(b4)        | 124.49(12) | C(4)-C(3)-H(3)                      | 127.3      |
| N(3)-C(a5)-C(m2)         | 125.33(12) | ${ m N(6)-C(3)-H(3)}$               | 127.3      |
| N(3)-C(a5)-C(b5)         | 109.86(11) | C(3)-C(4)-N(5)                      | 109.95(14) |
| C(m2)– $C(a5)$ – $C(b5)$ | 124.73(12) | C(3)-C(4)-H(4)                      | 125.0      |
| N(3)-C(a6)-C(m3)         | 125.76(12) | ${ m N(5)-C(4)-H(4)}$               | 125.0      |
| N(3)-C(a6)-C(b6)         | 110.17(11) | C(2)-N(5)-C(4)                      | 105.89(12) |
| C(m3)-C(a6)-C(b6)        | 124.01(12) | C(2)– $N(5)$ – $Fe$                 | 133.68(10) |
| N(4)-C(a7)-C(m3)         | 125.46(11) | m C(4)–N(5)–Fe                      | 120.02(9)  |
| N(4)-C(a7)-C(b7)         | 110.17(11) | C(2)-C(5)-H(5a)                     | 109.5      |
| C(m3)-C(a7)-C(b7)        | 123.95(12) | C(2)-C(5)-H(5b)                     | 109.5      |
| N(4)-C(a8)-C(m4)         | 125.44(11) | H(5a)-C(5)-H(5b)                    | 109.5      |
| N(4)-C(a8)-C(b8)         | 110.14(11) | C(2)– $C(5)$ – $H(5c)$              | 109.5      |
| C(m4)-C(a8)-C(b8)        | 124.40(12) | ${ m H(5a)-C(5)-H(5c)}$             | 109.5      |
| C(b2)-C(b1)-C(a1)        | 106.81(12) | H(5b)-C(5)-H(5c)                    | 109.5      |
| C(b2)-C(b1)-H(b1)        | 126.6      | C(2)-N(6)-C(3)                      | 108.95(13) |
| C(a1)-C(b1)-H(b1)        | 126.6      | C(2)-N(6)-H(6)                      | 121(2)     |
| C(b1)-C(b2)-C(a2)        | 106.88(12) | ${ m C}(3) - { m N}(6) - { m H}(6)$ | 130(2)     |
| C(b1)-C(b2)-H(b2)        | 126.6      | C(56)#1-C(51)-C(52)                 | 146.2(5)   |
| C(a2)-C(b2)-H(b2)        | 126.6      | C(56)#1-C(51)-C(56)                 | 86.9(6)    |
| C(b4)-C(b3)-C(a3)        | 106.91(12) | C(52)-C(51)-C(56)                   | 120.0      |
| C(b4)-C(b3)-H(b3)        | 126.5      | C(52)-C(51)-C(57)                   | 120.8(4)   |
| C(a3)-C(b3)-H(b3)        | 126.5      | C(56)-C(51)-C(57)                   | 119.1(4)   |
| C(b3)-C(b4)-C(a4)        | 107.15(12) | C(52)-C(51)-C(51)#1                 | 154.5(3)   |
| C(b3)-C(b4)-H(b4)        | 126.4      | C(57)-C(51)-C(51)#1                 | 80.4(4)    |
| C(a4)-C(b4)-H(b4)        | 126.4      | C(53)-C(52)-C(51)                   | 120.0      |
| C(b6)-C(b5)-C(a5)        | 107.14(12) | C(52)-C(53)-C(55)                   | 120.0      |
| C(b6)-C(b5)-H(b5)        | 126.4      | C(54)-C(55)-C(53)                   | 120.0      |
| C(a5)-C(b5)-H(b5)        | 126.4      | C(57)#1-C(54)-C(55)                 | 148.7(4)   |
| C(b5)-C(b6)-C(a6)        | 106.84(11) | C(55)-C(54)-C(56)                   | 120.0      |
| C(b5)-C(b6)-H(b6)        | 126.6      | C(57)#1-C(56)-C(51)#1               | 87.1(7)    |

Table S11. Continued

| angle             | degree     | angle                 | degree    |
|-------------------|------------|-----------------------|-----------|
| C(a6)-C(b6)-H(b6) | 126.6      | C(57)#1-C(56)-C(54)   | 54.0(6)   |
| C(b8)-C(b7)-C(a7) | 106.95(11) | C(51)#1-C(56)-C(54)   | 141.1(5)  |
| C(b8)-C(b7)-H(b7) | 126.5      | C(57)#1-C(56)-C(51)   | 152.7(5)  |
| C(a7)-C(b7)-H(b7) | 126.5      | C(51)#1-C(56)-C(51)   | 93.1(5)   |
| C(b7)-C(b8)-C(a8) | 106.83(11) | C(54)-C(56)-C(51)     | 120.0     |
| C(b7)-C(b8)-H(b8) | 126.6      | C(57)#1-C(56)-C(56)#1 | 130.3(7)  |
| C(a8)-C(b8)-H(b8) | 126.6      | C(54)-C(56)-C(56)#1   | 156.3(3)  |
| C(a3)-C(m1)-C(a2) | 122.97(12) | C(56)#1-C(57)-C(54)#1 | 86.2(8)   |
| C(a3)-C(m1)-C(11) | 120.01(11) | C(56)#1-C(57)-C(51)   | 56.2(6)   |
| C(a2)-C(m1)-C(11) | 117.00(12) | C(54)#1-C(57)-C(51)   | 142.3(6)  |
| C(a4)-C(m2)-C(a5) | 123.46(12) | C(62)#2-C(61)-C(63)#2 | 110.3(11) |
| C(a4)-C(m2)-C(21) | 118.22(12) | C(62)#2-C(61)-C(62)   | 95.9(6)   |
| C(a5)-C(m2)-C(21) | 118.16(12) | C(63)#2-C(61)-C(62)   | 153.7(9)  |
| C(a7)-C(m3)-C(a6) | 123.48(12) | C(63)#2-C(61)-C(66)   | 86.3(9)   |
| C(a7)-C(m3)-C(31) | 118.73(11) | C(62)-C(61)-C(66)     | 120.0     |
| C(a6)-C(m3)-C(31) | 117.40(11) | C(62)#2-C(61)-C(61)#2 | 63.8(6)   |
| C(a1)-C(m4)-C(a8) | 122.79(12) | C(63)#2-C(61)-C(61)#2 | 173.8(10) |
| C(a1)-C(m4)-C(41) | 118.10(11) | C(66)-C(61)-C(61)#2   | 87.9(3)   |
| C(a8)-C(m4)-C(41) | 119.09(11) | C(62)#2-C(61)-C(64)#2 | 170.8(12) |
| C(16)-C(11)-C(12) | 118.75(13) | C(63)#2-C(61)-C(64)#2 | 60.7(5)   |
| C(16)-C(11)-C(m1) | 118.62(12) | C(62)-C(61)-C(64)#2   | 93.0(8)   |
| C(12)-C(11)-C(m1) | 122.61(13) | C(66)-C(61)-C(64)#2   | 147.0(8)  |
| C(13)-C(12)-C(11) | 120.27(14) | C(61)#2-C(61)-C(64)#2 | 125.1(9)  |
| C(13)-C(12)-H(12) | 119.9      | C(62)#2-C(61)-C(66)#2 | 106.7(10) |
| C(11)-C(12)-H(12) | 119.9      | C(63)#2-C(61)-C(66)#2 | 142.8(8)  |
| C(14)-C(13)-C(12) | 120.52(14) | C(66)-C(61)-C(66)#2   | 130.9(5)  |
| C(14)-C(13)-H(13) | 119.7      | C(64)#2-C(61)-C(66)#2 | 82.1(4)   |
| C(12)-C(13)-H(13) | 119.7      | C(66)#2-C(62)-C(61)#2 | 128(2)    |
| C(15)-C(14)-C(13) | 119.72(13) | C(66)#2-C(62)-C(61)   | 147.8(17) |
| C(15)-C(14)-H(14) | 120.1      | C(61)#2-C(62)-C(61)   | 84.1(7)   |
| C(13)-C(14)-H(14) | 120.1      | C(66)#2-C(62)-C(63)   | 92.2(17)  |
| C(14)-C(15)-C(16) | 119.75(15) | C(61)-C(62)-C(63)     | 120.0     |
| C(14)-C(15)-H(15) | 120.1      | C(66)#2-C(62)-C(65)#2 | 60.8(10)  |
| C(16)-C(15)-H(15) | 120.1      | C(61)#2-C(62)-C(65)#2 | 170.9(14) |

Table S11. Continued

| angle             | degree     | angle                 | degree    |
|-------------------|------------|-----------------------|-----------|
| C(11)-C(16)-C(15) | 120.96(14) | C(61)-C(62)-C(65)#2   | 87.0(8)   |
| C(11)-C(16)-H(16) | 119.5      | C(63)-C(62)-C(65)#2   | 153.0(8)  |
| C(15)-C(16)-H(16) | 119.5      | C(66)#2-C(62)-C(62)#2 | 176.1(17) |
| C(22)-C(21)-C(26) | 118.74(13) | C(63)-C(62)-C(62)#2   | 90.9(3)   |
| C(22)-C(21)-C(m2) | 120.52(13) | C(65)#2-C(62)-C(62)#2 | 116.0(9)  |
| C(26)-C(21)-C(m2) | 120.73(13) | C(61)#2-C(63)-C(64)   | 86.3(5)   |
| C(23)-C(22)-C(21) | 120.55(16) | C(64)-C(63)-C(62)     | 120.0     |
| C(23)-C(22)-H(22) | 119.7      | C(61)#2-C(63)-C(66)#2 | 60.7(7)   |
| C(21)-C(22)-H(22) | 119.7      | C(64)-C(63)-C(66)#2   | 147.0(5)  |
| C(24)-C(23)-C(22) | 120.22(17) | C(65)-C(64)-C(63)     | 120.0     |
| C(24)-C(23)-H(23) | 119.9      | C(65)-C(64)-C(61)#2   | 87.0(3)   |
| C(22)-C(23)-H(23) | 119.9      | C(64)-C(65)-C(66)     | 120.0     |
| C(23)-C(24)-C(25) | 119.77(15) | C(64)-C(65)-C(67)     | 118.4(8)  |
| C(23)-C(24)-H(24) | 120.1      | C(66)-C(65)-C(67)     | 121.5(8)  |
| C(25)-C(24)-H(24) | 120.1      | C(64)-C(65)-C(62)#2   | 93.0(3)   |
| C(24)-C(25)-C(26) | 120.38(16) | C(67)-C(65)-C(62)#2   | 148.4(9)  |
| C(24)-C(25)-H(25) | 119.8      | C(62)#2-C(66)-C(65)   | 92.2(8)   |
| C(26)-C(25)-H(25) | 119.8      | C(65)-C(66)-C(61)     | 120.0     |
| C(25)-C(26)-C(21) | 120.32(15) | C(62)#2-C(66)-C(63)#2 | 60.8(8)   |
| C(25)-C(26)-H(26) | 119.8      | C(65)-C(66)-C(63)#2   | 153.0(5)  |
| C(21)-C(26)-H(26) | 119.8      | C(65)-C(66)-C(61)#2   | 70.9(3)   |
| C(36)-C(31)-C(32) | 118.70(12) | C(63)#2-C(66)-C(61)#2 | 82.2(4)   |
| C(36)-C(31)-C(m3) | 121.01(12) |                       |           |
| C(32)-C(31)-C(m3) | 120.24(12) |                       |           |

Table S11. Continued

| atom  | U <sub>11</sub> | $U_{22}$  | U <sub>33</sub> | $U_{23}$   | $U_{13}$  | U <sub>12</sub> |
|-------|-----------------|-----------|-----------------|------------|-----------|-----------------|
| Fe    | 0.0112(1)       | 0.0126(1) | 0.0144(1)       | -0.0022(1) | 0.0028(1) | -0.0012(1)      |
| N(1)  | 0.0135(5)       | 0.0143(4) | 0.0167(5)       | -0.0028(4) | 0.0040(4) | -0.0026(4)      |
| N(2)  | 0.0131(5)       | 0.0144(4) | 0.0168(5)       | -0.0023(4) | 0.0037(4) | -0.0016(4)      |
| N(3)  | 0.0128(4)       | 0.0148(4) | 0.0170(5)       | -0.0021(4) | 0.0038(4) | -0.0015(4)      |
| N(4)  | 0.0130(4)       | 0.0141(4) | 0.0160(5)       | -0.0025(3) | 0.0041(4) | -0.0012(4)      |
| C(a1) | 0.0142(5)       | 0.0174(5) | 0.0176(5)       | -0.0038(4) | 0.0053(4) | -0.0020(4)      |
| C(a2) | 0.0152(5)       | 0.0159(5) | 0.0179(6)       | -0.0048(4) | 0.0047(4) | -0.0016(4)      |
| C(a3) | 0.0148(5)       | 0.0141(5) | 0.0178(5)       | -0.0028(4) | 0.0035(4) | -0.0016(4)      |
| C(a4) | 0.0134(5)       | 0.0158(5) | 0.0186(6)       | -0.0013(4) | 0.0030(4) | -0.0025(4)      |
| C(a5) | 0.0129(5)       | 0.0172(5) | 0.0178(5)       | -0.0007(4) | 0.0042(4) | -0.0010(4)      |
| C(a6) | 0.0151(5)       | 0.0155(5) | 0.0158(5)       | -0.0016(4) | 0.0049(4) | -0.0001(4)      |
| C(a7) | 0.0143(5)       | 0.0142(5) | 0.0156(5)       | -0.0022(4) | 0.0027(4) | -0.0013(4)      |
| C(a8) | 0.0133(5)       | 0.0136(5) | 0.0180(5)       | -0.0020(4) | 0.0035(4) | -0.0014(4)      |
| C(b1) | 0.0189(6)       | 0.0227(6) | 0.0213(6)       | -0.0072(5) | 0.0096(5) | -0.0055(5)      |
| C(b2) | 0.0193(6)       | 0.0225(6) | 0.0230(6)       | -0.0094(5) | 0.0095(5) | -0.0043(5)      |
| C(b3) | 0.0181(6)       | 0.0153(5) | 0.0247(6)       | -0.0042(5) | 0.0052(5) | -0.0035(5)      |
| C(b4) | 0.0171(6)       | 0.0170(6) | 0.0257(6)       | -0.0039(5) | 0.0052(5) | -0.0049(5)      |
| C(b5) | 0.0148(5)       | 0.0202(6) | 0.0212(6)       | -0.0015(5) | 0.0067(5) | -0.0003(5)      |
| C(b6) | 0.0161(6)       | 0.0193(6) | 0.0195(6)       | -0.0020(4) | 0.0080(5) | 0.0001(5)       |
| C(b7) | 0.0165(6)       | 0.0148(5) | 0.0183(6)       | -0.0037(4) | 0.0030(4) | -0.0021(4)      |
| C(b8) | 0.0150(5)       | 0.0141(5) | 0.0206(6)       | -0.0027(4) | 0.0037(4) | -0.0022(4)      |
| C(m1) | 0.0155(5)       | 0.0152(5) | 0.0181(5)       | -0.0038(4) | 0.0032(4) | -0.0013(4)      |
| C(m2) | 0.0127(5)       | 0.0174(5) | 0.0197(6)       | -0.0014(4) | 0.0036(4) | -0.0024(4)      |
| C(m3) | 0.0155(5)       | 0.0138(5) | 0.0164(5)       | -0.0019(4) | 0.0046(4) | -0.0002(4)      |
| C(m4) | 0.0137(5)       | 0.0156(5) | 0.0186(6)       | -0.0021(4) | 0.0046(4) | -0.0027(4)      |
| C(11) | 0.0164(6)       | 0.0164(5) | 0.0227(6)       | -0.0050(5) | 0.0067(5) | -0.0027(4)      |
| C(12) | 0.0254(7)       | 0.0175(6) | 0.0222(6)       | -0.0041(5) | 0.0048(5) | -0.0010(5)      |
| C(13) | 0.0315(8)       | 0.0192(6) | 0.0238(7)       | -0.0063(5) | 0.0085(6) | -0.0037(6)      |
| C(14) | 0.0244(7)       | 0.0167(6) | 0.0341(8)       | -0.0074(5) | 0.0150(6) | -0.0030(5)      |
| C(15) | 0.0206(7)       | 0.0244(7) | 0.0390(9)       | -0.0070(6) | 0.0051(6) | 0.0043(6)       |
| C(16) | 0.0200(6)       | 0.0257(7) | 0.0298(7)       | -0.0098(6) | 0.0011(6) | 0.0017(5)       |
| C(21) | 0.0148(6)       | 0.0173(5) | 0.0265(6)       | -0.0041(5) | 0.0063(5) | -0.0023(5)      |
| C(22) | 0.0220(7)       | 0.0325(8) | 0.0302(8)       | -0.0011(6) | 0.0098(6) | -0.0064(6)      |
| C(23) | 0.0291(8)       | 0.0372(9) | 0.0444(10)      | -0.0013(7) | 0.0205(8) | -0.0091(7)      |

**Table S12.** Anisotropic Displacement Parameters (Å2) for  $[Fe(TPP)(CO)(2-MeHIm)] \cdot C_7 H_8^a$ 

| atom  | $U_{11}$  | $U_{22}$  | $U_{33}$   | $U_{23}$   | $U_{13}$   | $U_{12}$   |
|-------|-----------|-----------|------------|------------|------------|------------|
| C(24) | 0.0184(7) | 0.0299(8) | 0.0540(11) | -0.0098(7) | 0.0139(7)  | -0.0077(6) |
| C(25) | 0.0146(6) | 0.0261(7) | 0.0423(9)  | -0.0120(6) | 0.0033(6)  | -0.0022(5) |
| C(26) | 0.0157(6) | 0.0213(6) | 0.0284(7)  | -0.0060(5) | 0.0036(5)  | -0.0012(5) |
| C(31) | 0.0148(5) | 0.0155(5) | 0.0182(5)  | -0.0036(4) | 0.0057(4)  | -0.0012(4) |
| C(32) | 0.0221(6) | 0.0179(6) | 0.0192(6)  | -0.0005(5) | 0.0057(5)  | 0.0013(5)  |
| C(33) | 0.0237(7) | 0.0171(6) | 0.0263(7)  | -0.0026(5) | 0.0080(5)  | 0.0014(5)  |
| C(34) | 0.0241(7) | 0.0206(6) | 0.0244(6)  | -0.0071(5) | 0.0112(5)  | -0.0018(5) |
| C(35) | 0.0325(8) | 0.0232(6) | 0.0188(6)  | -0.0033(5) | 0.0107(6)  | -0.0016(6) |
| C(36) | 0.0270(7) | 0.0178(6) | 0.0201(6)  | -0.0009(5) | 0.0080(5)  | 0.0006(5)  |
| C(41) | 0.0175(6) | 0.0174(5) | 0.0190(6)  | -0.0051(4) | 0.0071(5)  | -0.0044(5) |
| C(42) | 0.0173(6) | 0.0223(6) | 0.0241(6)  | -0.0038(5) | 0.0072(5)  | -0.0038(5) |
| C(43) | 0.0178(6) | 0.0291(7) | 0.0285(7)  | -0.0076(6) | 0.0099(5)  | -0.0059(5) |
| C(44) | 0.0259(7) | 0.0285(7) | 0.0277(7)  | -0.0091(6) | 0.0142(6)  | -0.0129(6) |
| C(45) | 0.0315(8) | 0.0209(6) | 0.0291(7)  | -0.0017(5) | 0.0126(6)  | -0.0079(6) |
| C(46) | 0.0229(7) | 0.0186(6) | 0.0283(7)  | -0.0019(5) | 0.0097(6)  | -0.0028(5) |
| C(1)  | 0.0156(5) | 0.0175(6) | 0.0209(6)  | -0.0039(4) | 0.0045(5)  | -0.0009(4) |
| O(1)  | 0.0326(6) | 0.0304(6) | 0.0269(6)  | 0.0042(4)  | -0.0004(5) | 0.0066(5)  |
| C(2)  | 0.0199(6) | 0.0226(6) | 0.0196(6)  | 0.0005(5)  | 0.0028(5)  | 0.0023(5)  |
| C(3)  | 0.0312(8) | 0.0288(7) | 0.0279(7)  | 0.0084(6)  | 0.0045(6)  | -0.0040(6) |
| C(4)  | 0.0235(7) | 0.0249(7) | 0.0229(6)  | 0.0034(5)  | 0.0043(5)  | -0.0033(5) |
| N(5)  | 0.0174(5) | 0.0182(5) | 0.0171(5)  | -0.0016(4) | 0.0031(4)  | -0.0001(4) |
| C(5)  | 0.0171(6) | 0.0348(8) | 0.0306(8)  | 0.0063(6)  | 0.0015(6)  | -0.0003(6) |
| N(6)  | 0.0245(6) | 0.0283(6) | 0.0253(6)  | 0.0083(5)  | 0.0001(5)  | 0.0031(5)  |
| C(51) | 0.079(4)  | 0.077(4)  | 0.033(2)   | 0.001(2)   | 0.003(2)   | 0.015(3)   |
| C(52) | 0.096(5)  | 0.064(3)  | 0.059(3)   | -0.008(3)  | -0.007(3)  | 0.027(3)   |
| C(53) | 0.153(7)  | 0.057(3)  | 0.052(3)   | -0.010(3)  | -0.015(4)  | 0.016(4)   |
| C(55) | 0.116(6)  | 0.083(4)  | 0.049(3)   | -0.014(3)  | -0.016(3)  | 0.014(4)   |
| C(54) | 0.096(5)  | 0.071(4)  | 0.046(3)   | -0.012(2)  | 0.006(3)   | 0.000(4)   |
| C(56) | 0.119(6)  | 0.058(3)  | 0.040(2)   | 0.002(2)   | 0.011(3)   | 0.023(4)   |
| C(57) | 0.117(6)  | 0.061(4)  | 0.059(3)   | -0.013(3)  | 0.007(4)   | 0.012(4)   |
| C(61) | 0.108(7)  | 0.108(7)  | 0.051(4)   | -0.010(4)  | 0.041(4)   | -0.047(6)  |
| C(62) | 0.242(17) | 0.115(8)  | 0.092(7)   | -0.062(6)  | 0.127(10)  | -0.120(11) |
| C(63) | 0.271(16) | 0.093(6)  | 0.058(4)   | 0.031(4)   | 0.105(8)   | 0.059(8)   |
| C(64) | 0.293(18) | 0.134(9)  | 0.066(5)   | -0.045(5)  | 0.106(8)   | -0.114(11) |

Table S12. Continued

| atom  | U <sub>11</sub> | $U_{22}$  | U <sub>33</sub> | $U_{23}$  | $U_{13}$ | U <sub>12</sub> |
|-------|-----------------|-----------|-----------------|-----------|----------|-----------------|
| C(65) | 0.106(6)        | 0.107(6)  | 0.036(3)        | -0.015(3) | 0.029(3) | -0.005(5)       |
| C(66) | 0.095(5)        | 0.107(6)  | 0.042(3)        | -0.031(4) | 0.032(3) | -0.028(5)       |
| C(67) | 0.132(10)       | 0.216(15) | 0.082(6)        | -0.038(8) | 0.037(6) | -0.014(10)      |

Table S12. Continued

<sup>*a*</sup>The estimated standard deviations of the least significant digits are given in parentheses. The anisotropic displacement factor exponent takes the form:  $-2 \pi [h^2 U_{11} + ... + 2 h k a^* b^* U_{12}]$ .

| atom  | x        | y          | z        | $U(\mathrm{eq})$ |
|-------|----------|------------|----------|------------------|
| H(b1  | 0.0555   | 0.2004     | 0.7898   | 0.024            |
| H(b2  | 0.1365   | 0.2966     | 0.8251   | 0.025            |
| H(b3) | 0.4771   | 0.3929     | 0.7692   | 0.023            |
| H(b4  | 0.6287   | 0.3535     | 0.7176   | 0.024            |
| H(b5) | 0.6785   | 0.1733     | 0.5046   | 0.022            |
| H(b6  | 0.5537   | 0.1031     | 0.4055   | 0.021            |
| H(b7  | 0.1636   | 0.0405     | 0.3887   | 0.020            |
| H(b8  | 0.0501   | 0.0545     | 0.5013   | 0.020            |
| H(12) | 0.3875   | 0.3667     | 0.9179   | 0.026            |
| H(13) | 0.3381   | 0.4500     | 0.9840   | 0.030            |
| H(14) | 0.1996   | 0.5055     | 0.8942   | 0.028            |
| H(15) | 0.1055   | 0.4756     | 0.7395   | 0.034            |
| H(16) | 0.1529   | 0.3913     | 0.6741   | 0.031            |
| H(22) | 0.6760   | 0.2831     | 0.4775   | 0.033            |
| H(23) | 0.8479   | 0.3115     | 0.4860   | 0.042            |
| H(24) | 0.9736   | 0.3140     | 0.6352   | 0.040            |
| H(25) | 0.9279   | 0.2874     | 0.7764   | 0.034            |
| H(26) | 0.7565   | 0.2585     | 0.7690   | 0.027            |
| H(32) | 0.3999   | -0.0067    | 0.4631   | 0.024            |
| H(33) | 0.4285   | -0.0757    | 0.3542   | 0.027            |
| H(34) | 0.4008   | -0.0529    | 0.1895   | 0.027            |
| H(35) | 0.3428   | 0.0383     | 0.1341   | 0.029            |
| H(36) | 0.3183   | 0.1079     | 0.2437   | 0.026            |
| H(42) | -0.0815  | 0.1692     | 0.6228   | 0.025            |
| H(43) | -0.2143  | 0.1212     | 0.6717   | 0.029            |
| H(44) | -0.1800  | 0.0327     | 0.7496   | 0.031            |
| H(45) | -0.0150  | -0.0092    | 0.7721   | 0.032            |
| H(46) | 0.1165   | 0.0368     | 0.7188   | 0.027            |
| H(3)  | 0.2963   | 0.3640     | 0.3627   | 0.036            |
| H(4)  | 0.4098   | 0.2995     | 0.4830   | 0.029            |
| H(5a) | 0.0685   | 0.2442     | 0.5183   | 0.043            |
| H(5b) | 0.0816   | 0.2001     | 0.4366   | 0.043            |
| H(5c) | 0.0167   | 0.2579     | 0.4061   | 0.043            |
| H(6)  | 0.120(2) | 0.3254(12) | 0.350(2) | 0.060(8)         |

**Table S13.** Hydrogen Atom Coordinates and Equivalent Isotropic Displacement Parameters $(Å^2)$  for  $[Fe(TPP)(CO)(2-MeHIm)] \cdot C_7 H_8^a$ 

 $^{a}U(\mathrm{eq})$  is defined as one third of the trace of the orthogonalized  $\mathbf{U}_{ij}$  tensor the estimated standard

deviations of the least significant digits are given in parentheses.

# **Supporting Information**

| formula                                 | $C_{50}H_{36}FeN_6O$                       |
|-----------------------------------------|--------------------------------------------|
| FW, amu                                 | 792.70                                     |
| $a, \mathrm{\AA}$                       | 15.0577(8)                                 |
| b, Å                                    | 18.8294(10)                                |
| $c, \mathrm{\AA}$                       | 13.7197(7)                                 |
| $\beta, \deg$                           | 102.8940(10)                               |
| $V,  \mathrm{\AA}^3$                    | 3791.8(3)                                  |
| space group                             | C2/c                                       |
| Ζ                                       | 4                                          |
| $D_c, g/cm^3$                           | 1.389                                      |
| F(000)                                  | 1648                                       |
| $\mu, \mathrm{mm}^{-1}$                 | 0.447                                      |
| crystal dimensions, mm                  | 0.4	imes 0.3	imes 0.2                      |
| radiation                               | MoK $\alpha$ , $\bar{\lambda} = 0.71073$ Å |
| temperature, K                          | 100(2)                                     |
| diffractometer                          | Bruker Apex CCD                            |
| $\theta$ range for collected data, deg  | 1.76 - 28.29                               |
| index range                             | $-19 \le h \le 20$                         |
|                                         | $-25 \le k \le 25$                         |
|                                         | $-18 \le l \le 18$                         |
| total data collected                    | 20612                                      |
| absorption correction                   | Semi-empirical fromequiv                   |
| relative transmission coefficients (I)  | 1.0000 and $0.8883$                        |
| unique data                             | 4695 ( $R_{\rm int} = 0.0376$ )            |
| unique observed data $[I > 2\sigma(I)]$ | 4169                                       |
| refinement method                       | Full-matrix least-squares on $F^2$         |
| data/restraints/parameters              | 4695/0/294                                 |
| goodness-of-fit (pased on $F^2$ )       | 1.052                                      |
| final R indices $[I > 2\sigma(I)]$      | $R_1 = 0.0406, wR_2 = 0.1073$              |
| final $R$ indices (all data)            | $R_1 = 0.0453, wR_2 = 0.1115$              |

Table S14.Complete Crystallographic Details for [Fe(TPP)(CO)(1,2-DiMeIm)]

| atom            |             |               |              |                                  |
|-----------------|-------------|---------------|--------------|----------------------------------|
| atom            | <i>x</i>    | $\frac{y}{2}$ | 2            | $\frac{U(\text{eq})}{0.0102(1)}$ |
| Fe              | 1.0000      | 0.87267(1)    | 0.2500       | 0.0182(1)                        |
| N(1)            | 0.86716(8)  | 0.87229(6)    | 0.18397(9)   | 0.0202(2)                        |
| N(2)            | 0.96876(9)  | 0.87341(6)    | 0.38463(9)   | 0.0208(2)                        |
| C(a4)           | 1.02836(10) | 0.87507(7)    | 0.47692(11)  | 0.0215(3)                        |
| C(a3)           | 0.88284(10) | 0.87072(8)    | 0.40451(11)  | 0.0224(3)                        |
| C(a2)           | 0.79480(10) | 0.87565(8)    | 0.23045(11)  | 0.0221(3)                        |
| C(a1)           | 0.82929(10) | 0.87760(7)    | 0.08311(11)  | 0.0218(3)                        |
| C(b4)           | 0.97883(11) | 0.86997(8)    | 0.55564(12)  | 0.0255(3)                        |
| C(b3)           | 0.88937(11) | 0.86733(8)    | 0.51096(12)  | 0.0265(3)                        |
| C(b2)           | 0.71033(10) | 0.88365(9)    | 0.15694(12)  | 0.0267(3)                        |
| C(b1)           | 0.73164(10) | 0.88467(9)    | 0.06629(12)  | 0.0260(3)                        |
| C(m1)           | 0.80068(10) | 0.87300(8)    | 0.33349(12)  | 0.0229(3)                        |
| C(m2)           | 0.87682(10) | 0.87740(7)    | 0.00633(11)  | 0.0215(3)                        |
| C(11)           | 0.71360(11) | 0.87712(9)    | 0.36925(12)  | 0.0285(3)                        |
| C(12)           | 0.69517(12) | 0.93678(11)   | 0.42203(13)  | 0.0368(4)                        |
| C(13)           | 0.61222(13) | 0.94308(13)   | 0.45050(15)  | 0.0485(5)                        |
| C(14)           | 0.54796(12) | 0.89050(16)   | 0.42686(14)  | 0.0548(6)                        |
| C(15)           | 0.56566(13) | 0.83104(16)   | 0.37676(15)  | 0.0543(6)                        |
| C(16)           | 0.64882(12) | 0.82376(12)   | 0.34781(14)  | 0.0407(4)                        |
| C(21)           | 0.82290(10) | 0.87614(8)    | -0.09959(11) | 0.0221(3)                        |
| C(22)           | 0.82735(10) | 0.93234(8)    | -0.16480(11) | 0.0255(3)                        |
| C(23)           | 0.77853(11) | 0.92988(9)    | -0.26388(12) | 0.0295(3)                        |
| C(24)           | 0.72479(11) | 0.87124(9)    | -0.29894(12) | 0.0296(3)                        |
| C(25)           | 0.71997(10) | 0.81513(9)    | -0.23451(12) | 0.0285(3)                        |
| C(26)           | 0.76871(10) | 0.81737(8)    | -0.13583(11) | 0.0259(3)                        |
| C(1)            | 1.0000      | 0.96634(11)   | 0.2500       | 0.0212(4)                        |
| O(1)            | 1.0000      | 1.02677(9)    | 0.2500       | 0.0314(4)                        |
| $\mathrm{C}(3)$ | 0.9781(2)   | 0.65576(17)   | 0.1523(2)    | 0.0252(6)                        |
| C(4)            | 0.9760(2)   | 0.72646(18)   | 0.1407(3)    | 0.0239(6)                        |
| N(5)            | 0.9969(6)   | 0.76005(13)   | 0.2329(3)    | 0.0205(10)                       |
| C(2)            | 1.01118(19) | 0.70785(16)   | 0.3001(3)    | 0.0206(5)                        |
| N(6)            | 1.0000      | 0.64359(10)   | 0.2500       | 0.0240(4)                        |
| C(5)            | 1.0368(2)   | 0.71493(18)   | 0.4095(3)    | 0.0264(7)                        |
| C(6)            | 1.0140(3)   | 0.57362(17)   | 0.2996(3)    | 0.0332(7)                        |

**Table S15.** Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>) for  $[Fe(TPP)(CO)(1,2-DiMeIm)]^a$ 

 $^{a}\,U(\mathrm{eq})$  is defined as one third of the trace of the orthogonalized  $\mathbf{U}_{ij}$  tensor. The estimated standard

deviations of the least significant digits are given in parentheses.

| bond             | length (Å) | bond                            | length (Å) |
|------------------|------------|---------------------------------|------------|
| Fe–C(1)          | 1.764(2)   | C(23)-H(23)                     | 0.9500     |
| Fe-N(1)          | 2.0032(12) | C(24)-C(25)                     | 1.390(2)   |
| Fe-N(1)#1)       | 2.0032(12) | C(24)-H(24)                     | 0.9500     |
| Fe-N(2)          | 2.0052(13) | C(25)-C(26)                     | 1.389(2)   |
| Fe-N(2)#1)       | 2.0052(13) | $\rm C(25)–H(25)$               | 0.9500     |
| Fe-N(5)#1)       | 2.133(2)   | ${ m C}(26){ m -H}(26)$         | 0.9500     |
| Fe-N(5)          | 2.133(2)   | ${ m C}(1)$ – ${ m O}(1)$       | 1.138(3)   |
| m N(1)- m C(a1)  | 1.3776(18) | C(3)-C(2)#1)                    | 1.170(4)   |
| m N(1)- m C(a2)  | 1.3812(18) | ${ m C}(3) – { m N}(6)$         | 1.327(3)   |
| N(2)-C(a4)       | 1.3793(19) | ${ m C}(3)–{ m C}(4)$           | 1.340(5)   |
| N(2)– $C(a3)$    | 1.3815(19) | C(3)-C(5)#1)                    | 1.388(5)   |
| C(a4)– $C(m2#1)$ | 1.395(2)   | C(3)-C(6)#1)                    | 1.675(4)   |
| C(a4)– $C(b4)$   | 1.446(2)   | ${ m C}(3)	ext{-}{ m H}(2)$     | 0.9246     |
| C(a3)-C(m1)      | 1.394(2)   | C(4)-C(5)#1)                    | 0.707(4)   |
| C(a3)-C(b3)      | 1.443(2)   | C(4)-C(2)#1)                    | 0.866(4)   |
| C(a2)-C(m1)      | 1.398(2)   | ${ m C}(4) – { m N}(5)$         | 1.387(5)   |
| C(a2)– $C(b2)$   | 1.444(2)   | C(4)-N(5)#1)                    | 1.805(6)   |
| C(a1)– $C(m2)$   | 1.399(2)   | $ m C(4)	ext{-}H(3)$            | 1.0967     |
| C(a1)– $C(b1)$   | 1.443(2)   | N(5)-N(5)#1)                    | 0.457(7)   |
| C(b4)-C(b3)      | 1.351(2)   | N(5)-C(2)#1)                    | 1.078(4)   |
| C(b4)-H(b4)      | 0.9500     | N(5)-C(2)                       | 1.331(4)   |
| C(b3)– $H(b3)$   | 0.9500     | N(5)-C(4)#1)                    | 1.805(6)   |
| C(b2)-C(b1)      | 1.352(2)   | C(2)-C(4)#1)                    | 0.866(4)   |
| C(b2)-H(b2)      | 0.9500     | C(2)-N(5)#1)                    | 1.078(4)   |
| C(b1)-H(b1)      | 0.9500     | C(2)-C(3)#1)                    | 1.170(4)   |
| C(m1)-C(11)      | 1.501(2)   | C(2)-C(2)#1)                    | 1.339(7)   |
| C(m2)– $C(a4#1)$ | 1.395(2)   | ${ m C}(2) ightarrow { m N}(6)$ | 1.383(4)   |
| C(m2)– $C(21)$   | 1.498(2)   | ${ m C}(2)–{ m C}(5)$           | 1.471(5)   |
| C(11)-C(16)      | 1.385(3)   | N(6)-C(3)#1)                    | 1.327(3)   |
| C(11)-C(12)      | 1.398(3)   | N(6)-C(2)#1)                    | 1.383(4)   |
| C(12)-C(13)      | 1.394(2)   | N(6)-C(6)#1)                    | 1.476(3)   |
| C(12)-H(12)      | 0.9500     | m N(6)- m C(6)                  | 1.476(3)   |
| C(13)-C(14)      | 1.372(4)   | C(5)-C(4)#1)                    | 0.707(4)   |
| C(13)-H(13)      | 0.9500     | C(5)-C(3)#1)                    | 1.388(5)   |

Table S16. Bond Lengths for  $[Fe(TPP)(CO)(1,2-DiMeIm)]^a$ 

| bond             | length (Å) | bond                  | length (Å) |
|------------------|------------|-----------------------|------------|
| C(14)-C(15)      | 1.371(4)   | C(5)– $H(4a)$         | 0.8167     |
| C(14) - H(14)    | 0.9500     | C(5)– $H(4b)$         | 0.8807     |
| C(15)-C(16)      | 1.402(3)   | $ m C(5)	ext{-}H(4c)$ | 0.9619     |
| m C(15)-H(15)    | 0.9500     | C(6)-C(6)#1)          | 1.332(7)   |
| m C(16)- m H(16) | 0.9028     | C(6)-C(3)#1)          | 1.675(4)   |
| m C(21)- m C(22) | 1.397(2)   | C(6)– $H(5a)$         | 0.9472     |
| m C(21)- m C(26) | 1.399(2)   | C(6)– $H(5b)$         | 0.8458     |
| m C(22)– m C(23) | 1.394(2)   | m C(6)- m H(5c)       | 0.9181     |
| m C(22)-H(22)    | 0.9500     |                       |            |
| C(23)-C(24)      | 1.390(2)   |                       |            |

Table S16. Continued

| angle                                               | degree     | angle                                     | degree     |
|-----------------------------------------------------|------------|-------------------------------------------|------------|
| C(1)–Fe– $N(1)$                                     | 90.21(3)   | C(2)#1-C(3)-C(6)#1                        | 124.4(3)   |
| C(1)-Fe-N(1)#1                                      | 90.21(3)   | N(6)-C(3)-C(6)#1                          | 57.51(17)  |
| N(1)-Fe-N(1)#1                                      | 179.58(7)  | C(4)-C(3)-C(6)#1                          | 164.0(3)   |
| C(1)–Fe– $N(2)$                                     | 89.60(3)   | C(5)#1-C(3)-C(6)#1                        | 165.8(3)   |
| N(1)–Fe– $N(2)$                                     | 90.05(5)   | C(2)#1-C(3)-H(2)                          | 173.8      |
| N(1)#1-Fe-N(2)                                      | 89.96(5)   | m N(6)- m C(3)- m H(2)                    | 119.3      |
| $\mathrm{C}(1)\text{-}\mathrm{Fe-}\mathrm{N}(2)\#1$ | 89.60(3)   | C(4)-C(3)-H(2)                            | 134.1      |
| N(1)–Fe– $N(2)$ #1                                  | 89.96(5)   | C(5)#1-C(3)-H(2)                          | 104.2      |
| N(1)#1-Fe-N(2)#1                                    | 90.05(5)   | C(6)#1-C(3)-H(2)                          | 61.8       |
| N(2)-Fe- $N(2)$ #1                                  | 179.21(7)  | C(5)#1-C(4)-C(2)#1                        | 138.2(6)   |
| $\mathrm{C}(1)\text{-}\mathrm{Fe-}\mathrm{N}(5)\#1$ | 173.85(9)  | C(5)#1-C(4)-C(3)                          | 78.7(5)    |
| N(1)–Fe– $N(5)$ #1                                  | 92.4(2)    | C(2)#1-C(4)-C(3)                          | 59.5(3)    |
| N(1)#1-Fe-N(5)#1                                    | 87.2(2)    | C(5)#1-C(4)-N(5)                          | 170.6(5)   |
| N(2)–Fe– $N(5)$ #1                                  | 84.81(13)  | C(2)#1-C(4)-N(5)                          | 51.0(3)    |
| N(2)#1-Fe-N(5)#1                                    | 95.98(13)  | C(3)-C(4)-N(5)                            | 110.5(3)   |
| C(1)–Fe– $N(5)$                                     | 173.85(9)  | C(5)#1-C(4)-N(5)#1                        | 176.3(5)   |
| N(1)–Fe– $N(5)$                                     | 87.2(2)    | C(3)-C(4)-N(5)#1                          | 103.9(3)   |
| N(1)#1-Fe-N(5)                                      | 92.4(2)    | C(5)#1-C(4)-H(3)                          | 53.4       |
| N(2)–Fe– $N(5)$                                     | 95.98(13)  | C(2)#1-C(4)-H(3)                          | 166.0      |
| N(2)#1-Fe-N(5)                                      | 84.81(13)  | ${ m C}(3){ m -}{ m C}(4){ m -}{ m H}(3)$ | 130.5      |
| N(5)#1-Fe-N(5)                                      | 12.29(18)  | N(5)-C(4)-H(3)                            | 117.9      |
| C(a1)-N(1)-C(a2)                                    | 105.55(12) | N(5)#1-C(4)-H(3)                          | 124.6      |
| C(a1)-N(1)-Fe                                       | 126.99(10) | N(5)#1-N(5)-C(2)#1                        | 114.1(3)   |
| C(a2)-N(1)-Fe                                       | 127.01(10) | N(5)#1-N(5)-C(2)                          | 47.6(2)    |
| C(a4)-N(2)-C(a3)                                    | 105.41(12) | C(2)#1-N(5)-C(2)                          | 66.6(4)    |
| C(a4)-N(2)-Fe                                       | 127.41(10) | $ m N(5)\#1{-}N(5){-}C(4)$                | 152.7(3)   |
| C(a3)-N(2)-Fe                                       | 127.17(10) | C(2)-N(5)-C(4)                            | 105.3(3)   |
| N(2)-C(a4)-C(m2#1)                                  | 125.74(14) | C(2)#1-N(5)-C(4)#1                        | 93.7(3)    |
| N(2)-C(a4)-C(b4)                                    | 110.23(13) | C(4)-N(5)-C(4)#1                          | 132.3(3)   |
| C(m2#1-C(a4)-C(b4)                                  | 123.94(14) | m N(5)#1- m N(5)- m Fe                    | 83.85(9)   |
| N(2)-C(a3)-C(m1)                                    | 125.80(14) | C(2)#1-N(5)-Fe                            | 161.9(3)   |
| N(2)-C(a3)-C(b3)                                    | 110.25(13) | ${ m C}(2){ m -N}(5){ m -Fe}$             | 131.4(3)   |
| C(m1)-C(a3)-C(b3)                                   | 123.93(14) | C(4)– $N(5)$ – $Fe$                       | 123.3(2)   |
| N(1)-C(a2)-C(m1)                                    | 125.95(14) | C(4)#1-N(5)-Fe                            | 104.38(19) |

Table S17. Bond Angles for  $[Fe(TPP)(CO)(1,2-DiMeIm)]^a$ 

| angle              | degree     | angle              | degree    |
|--------------------|------------|--------------------|-----------|
| N(1)-C(a2)-C(b2)   | 110.18(13) | C(4)#1-C(2)-N(5)#1 | 90.3(4)   |
| C(m1)-C(a2)-C(b2)  | 123.86(14) | C(4)#1-C(2)-C(3)#1 | 80.8(3)   |
| N(1)-C(a1)-C(m2)   | 126.11(14) | N(5)#1-C(2)-C(3)#1 | 171.2(4)  |
| N(1)-C(a1)-C(b1)   | 110.25(13) | C(4)#1-C(2)-N(5)   | 108.5(4)  |
| C(m2)-C(a1)-C(b1)  | 123.64(14) | C(3)#1-C(2)-N(5)   | 170.6(4)  |
| C(b3)-C(b4)-C(a4)  | 106.96(13) | C(4)#1-C(2)-C(2)#1 | 156.1(3)  |
| C(b3)-C(b4)-H(b4)  | 126.5      | N(5)#1-C(2)-C(2)#1 | 65.8(2)   |
| C(a4)-C(b4)-H(b4)  | 126.5      | C(3)#1-C(2)-C(2)#1 | 123.0(2)  |
| C(b4)-C(b3)-C(a3)  | 107.07(13) | N(5)-C(2)-C(2)#1   | 47.6(2)   |
| C(b4)-C(b3)-H(b3)  | 126.5      | C(4)#1-C(2)-N(6)   | 142.8(4)  |
| C(a3)-C(b3)-H(b3)  | 126.5      | N(5)#1-C(2)-N(6)   | 126.8(3)  |
| C(b1)-C(b2)-C(a2)  | 106.92(13) | C(3)#1-C(2)-N(6)   | 62.0(2)   |
| C(b1)-C(b2)-H(b2)  | 126.5      | N(5)-C(2)-N(6)     | 108.6(3)  |
| C(a2)-C(b2)-H(b2)  | 126.5      | C(2)#1-C(2)-N(6)   | 61.04(14  |
| C(b2)-C(b1)-C(a1)  | 107.10(13) | N(5)#1-C(2)-C(5)   | 109.0(3)  |
| C(b2)-C(b1)-H(b1)  | 126.4      | C(3)#1-C(2)-C(5)   | 62.2(3)   |
| C(a1)-C(b1)-H(b1)  | 126.4      | N(5)-C(2)-C(5)     | 127.2(3)  |
| C(a3)-C(m1)-C(a2)  | 123.64(14) | C(2)#1-C(2)-C(5)   | 174.75(18 |
| C(a3)-C(m1)-C(11)  | 118.48(14) | N(6)-C(2)-C(5)     | 124.2(3)  |
| C(a2)-C(m1)-C(11)  | 117.78(13) | C(3)-N(6)-C(3)#1   | 160.1(3)  |
| C(a4#1-C(m2)-C(a1) | 123.54(14) | C(3)-N(6)-C(2)     | 109.0(2)  |
| C(a4#1-C(m2)-C(21) | 118.19(13) | C(3)#1-N(6)-C(2)   | 51.08(19  |
| C(a1)-C(m2)-C(21)  | 118.20(13) | C(3)-N(6)-C(2)#1   | 51.09(19  |
| C(16)-C(11)-C(12)  | 118.77(16) | C(3)#1-N(6)-C(2)#1 | 109.0(2)  |
| C(16)-C(11)-C(m1)  | 121.21(15) | C(2)-N(6)-C(2)#1   | 57.9(3)   |
| C(12)-C(11)-C(m1)  | 119.98(15) | C(3)-N(6)-C(6)#1   | 73.19(19  |
| C(13)-C(12)-C(11)  | 120.49(19) | C(3)#1-N(6)-C(6)#1 | 126.7(2)  |
| C(13)-C(12)-H(12)  | 119.8      | C(2)-N(6)-C(6)#1   | 177.20(19 |
| C(11)-C(12)-H(12)  | 119.8      | C(2)#1-N(6)-C(6)#1 | 124.25(19 |
| C(14)-C(13)-C(12)  | 120.1(2)   | C(3)-N(6)-C(6)     | 126.7(2)  |
| C(14)-C(13)-H(13)  | 120.0      | C(3)#1-N(6)-C(6)   | 73.19(19  |
| C(12)-C(13)-H(13)  | 120.0      | C(2)-N(6)-C(6)     | 124.25(19 |
| C(15)-C(14)-C(13)  | 120.15(17) | C(2)#1-N(6)-C(6)   | 177.2(2)  |
| C(15)-C(14)-H(14)  | 119.9      | C(6)#1-N(6)-C(6)   | 53.6(3)   |

Table S17. Continued

| angle              | degree     | angle                                       | degree     |
|--------------------|------------|---------------------------------------------|------------|
| C(13)-C(14)-H(14)  | 119.9      | C(4)#1-C(5)-C(3)#1                          | 71.3(4)    |
| C(14)-C(15)-C(16)  | 120.5(2)   | C(3)#1-C(5)-C(2)                            | 48.2(2)    |
| C(14)-C(15)-H(15)  | 119.7      | C(4)#1-C(5)-H(4a)                           | 98.0       |
| C(16)-C(15)-H(15)  | 119.7      | C(3)#1-C(5)-H(4a)                           | 127.4      |
| C(11)-C(16)-C(15)  | 120.0(2)   | C(2)-C(5)-H(4a)                             | 112.2      |
| C(11)-C(16)-H(16)  | 124.4      | C(4)#1-C(5)-H(4b)                           | 89.2       |
| C(15)-C(16)-H(16)  | 115.6      | C(3)#1-C(5)-H(4b)                           | 138.0      |
| C(22)-C(21)-C(26)  | 118.63(14) | C(2)-C(5)-H(4b)                             | 106.5      |
| C(22)-C(21)-C(m2)  | 121.07(13) | ${ m H}(4{ m a}){ m -C}(5){ m -H}(4{ m b})$ | 91.1       |
| C(26)-C(21)-C(m2)  | 120.28(13) | C(4)#1-C(5)-H(4c)                           | 131.4      |
| C(23)-C(22)-C(21)  | 120.60(15) | C(3)#1-C(5)-H(4c)                           | 60.8       |
| C(23)-C(22)-H(22)  | 119.7      | $ m C(2){-}C(5){-}H(4c)$                    | 108.4      |
| C(21)-C(22)-H(22)  | 119.7      | m H(4a)- m C(5)- m H(4c)                    | 116.5      |
| C(24)-C(23)-C(22)  | 120.22(15) | $\rm H(4b){-}C(5){-}H(4c)$                  | 121.1      |
| C(24)-C(23)-H(23)  | 119.9      | C(6)#1-C(6)-N(6)                            | 63.18(14)  |
| C(22)-C(23)-H(23)  | 119.9      | C(6)#1-C(6)-C(3)#1                          | 112.39(15) |
| C(25)-C(24)-C(23)  | 119.52(14) | N(6)-C(6)-C(3)#1                            | 49.31(14)  |
| C(25)-C(24)-H(24)  | 120.2      | C(6)#1-C(6)-H(5a)                           | 45.3       |
| C(23)-C(24)-H(24)  | 120.2      | m N(6)- m C(6)- m H(5a)                     | 108.5      |
| C(26)-C(25)-C(24)  | 120.38(15) | C(3)#1-C(6)-H(5a)                           | 157.5      |
| C(26)-C(25)-H(25)  | 119.8      | C(6)#1-C(6)-H(5b)                           | 130.6      |
| C(24)-C(25)-H(25)  | 119.8      | N(6)-C(6)-H(5b)                             | 112.0      |
| C(25)-C(26)-C(21)  | 120.65(14) | C(3)#1-C(6)-H(5b)                           | 78.3       |
| C(25)-C(26)-H(26)  | 119.7      | m H(5a)- m C(6)- m H(5b)                    | 113.2      |
| C(21)-C(26)-H(26)  | 119.7      | C(6)#1-C(6)-H(5c)                           | 117.5      |
| O(1)-C(1)-Fe       | 180.000(1) | $ m N(6){-}C(6){-}H(5c)$                    | 115.7      |
| C(2)#1-C(3)-N(6)   | 66.9(2)    | C(3)#1-C(6)-H(5c)                           | 95.8       |
| N(6)-C(3)-C(4)     | 106.6(3)   | m H(5a)- m C(6)- m H(5c)                    | 98.4       |
| C(2)#1-C(3)-C(5)#1 | 69.6(3)    | $\rm H(5b)-C(6)-H(5c)$                      | 108.5      |
| N(6)-C(3)-C(5)#1   | 136.5(3)   |                                             |            |

Table S17. Continued

| atom  | $U_{11}$   | $U_{22}$   | $U_{33}$   | $U_{23}$    | $U_{13}$   | $U_{12}$    |
|-------|------------|------------|------------|-------------|------------|-------------|
| Fe    | 0.0135(2)  | 0.0228(2)  | 0.0189(2)  | 0.000       | 0.0046(1)  | 0.000       |
| N(1)  | 0.0154(5)  | 0.0258(6)  | 0.0201(6)  | 0.0007(4)   | 0.0052(4)  | -0.0004(4)  |
| N(2)  | 0.0162(5)  | 0.0264(6)  | 0.0202(6)  | 0.0016(4)   | 0.0047(4)  | 0.0007(4)   |
| C(a4) | 0.0199(7)  | 0.0250(7)  | 0.0205(7)  | -0.0004(5)  | 0.0065(5)  | 0.0005(5)   |
| C(a3) | 0.0186(7)  | 0.0286(7)  | 0.0212(7)  | 0.0019(5)   | 0.0070(5)  | 0.0007(5)   |
| C(a2) | 0.0155(6)  | 0.0280(7)  | 0.0232(7)  | 0.0012(5)   | 0.0054(5)  | 0.0000(5)   |
| C(a1) | 0.0169(7)  | 0.0264(7)  | 0.0219(7)  | 0.0023(5)   | 0.0036(5)  | -0.0007(5)  |
| C(b4) | 0.0207(7)  | 0.0360(8)  | 0.0211(7)  | 0.0006(6)   | 0.0073(5)  | 0.0003(6)   |
| C(b3) | 0.0199(7)  | 0.0390(9)  | 0.0222(7)  | 0.0019(6)   | 0.0081(6)  | 0.0008(6)   |
| C(b2) | 0.0152(6)  | 0.0399(8)  | 0.0252(7)  | 0.0035(6)   | 0.0049(5)  | 0.0014(6)   |
| C(b1) | 0.0165(7)  | 0.0375(8)  | 0.0233(7)  | 0.0034(6)   | 0.0033(5)  | 0.0010(6)   |
| C(m1) | 0.0163(7)  | 0.0298(7)  | 0.0241(7)  | 0.0016(5)   | 0.0075(5)  | 0.0002(5)   |
| C(m2) | 0.0192(7)  | 0.0248(7)  | 0.0204(7)  | 0.0023(5)   | 0.0044(5)  | -0.0010(5)  |
| C(11) | 0.0162(7)  | 0.0493(10) | 0.0207(7)  | 0.0049(6)   | 0.0056(5)  | 0.0021(6)   |
| C(12) | 0.0279(8)  | 0.0535(11) | 0.0316(8)  | 0.0034(8)   | 0.0125(7)  | 0.0094(7)   |
| C(13) | 0.0319(10) | 0.0840(16) | 0.0333(9)  | 0.0068(10)  | 0.0149(8)  | 0.0205(10)  |
| C(14) | 0.0184(8)  | 0.124(2)   | 0.0237(8)  | 0.0081(11)  | 0.0087(6)  | 0.0097(10)  |
| C(15) | 0.0244(9)  | 0.107(2)   | 0.0326(10) | 0.0012(11)  | 0.0080(7)  | -0.0195(10) |
| C(16) | 0.0260(8)  | 0.0657(13) | 0.0318(9)  | -0.0015(8)  | 0.0096(7)  | -0.0106(8)  |
| C(21) | 0.0164(6)  | 0.0303(7)  | 0.0201(7)  | 0.0020(5)   | 0.0052(5)  | 0.0011(5)   |
| C(22) | 0.0214(7)  | 0.0304(7)  | 0.0253(7)  | 0.0031(6)   | 0.0062(5)  | -0.0014(6)  |
| C(23) | 0.0266(8)  | 0.0377(8)  | 0.0245(7)  | 0.0083(6)   | 0.0065(6)  | 0.0015(6)   |
| C(24) | 0.0224(7)  | 0.0458(10) | 0.0197(7)  | 0.0004(6)   | 0.0029(6)  | 0.0006(6)   |
| C(25) | 0.0216(7)  | 0.0374(8)  | 0.0262(7)  | -0.0043(6)  | 0.0047(6)  | -0.0052(6)  |
| C(26) | 0.0225(7)  | 0.0303(8)  | 0.0252(7)  | 0.0020(6)   | 0.0062(5)  | -0.0018(6)  |
| C(1)  | 0.0168(9)  | 0.0290(10) | 0.0193(9)  | 0.000       | 0.0070(7)  | 0.000       |
| O(1)  | 0.0349(9)  | 0.0270(8)  | 0.0363(9)  | 0.000       | 0.0164(7)  | 0.000       |
| C(3)  | 0.0274(15) | 0.0287(15) | 0.0183(12) | -0.0039(11) | 0.0023(11) | -0.0015(12) |
| C(4)  | 0.0237(15) | 0.0336(17) | 0.0128(18) | -0.0001(16) | 0.0010(13) | -0.0003(12) |
| N(5)  | 0.0166(14) | 0.0271(10) | 0.018(3)   | 0.0008(10)  | 0.004(3)   | 0.0016(12)  |
| C(2)  | 0.0163(13) | 0.0274(16) | 0.0183(16) | -0.0008(13) | 0.0040(10) | 0.0001(10)  |
| N(6)  | 0.0233(9)  | 0.0241(8)  | 0.0240(9)  | 0.000       | 0.0038(7)  | 0.000       |
| C(5)  | 0.0309(17) | 0.0287(17) | 0.0189(18) | -0.0021(14) | 0.0041(14) | 0.0032(12)  |
| C(6)  | 0.045(2)   | 0.0253(15) | 0.0291(17) | 0.0012(12)  | 0.0076(14) | 0.0029(13)  |

**Table S18.** Anisotropic Displacement Parameters  $(Å^2)$  for  $[Fe(TPP)(CO)(1,2-DiMeIm)]^a$ 

<sup>*a*</sup>The estimated standard deviations of the least significant digits are given in parentheses. The anisotropic displacement factor exponent takes the form:  $-2 \pi [h^2 U_{11} + ... + 2 h k a^* b^* U_{12}]$ .

| atom  | x      | y      | 2       | $U(\mathrm{eq})$ |
|-------|--------|--------|---------|------------------|
| H(b4  | 1.0044 | 0.8687 | 0.6255  | 0.031            |
| H(b3) | 0.8401 | 0.8639 | 0.5435  | 0.032            |
| H(b2  | 0.6511 | 0.8875 | 0.1698  | 0.032            |
| H(b1  | 0.6901 | 0.8892 | 0.0034  | 0.031            |
| H(12) | 0.7395 | 0.9733 | 0.4386  | 0.044            |
| H(13) | 0.6002 | 0.9838 | 0.4863  | 0.058            |
| H(14) | 0.4911 | 0.8953 | 0.4453  | 0.066            |
| H(15) | 0.5212 | 0.7945 | 0.3615  | 0.065            |
| H(16) | 0.6546 | 0.7842 | 0.3126  | 0.049            |
| H(22) | 0.8640 | 0.9726 | -0.1414 | 0.031            |
| H(23) | 0.7820 | 0.9684 | -0.3076 | 0.035            |
| H(24) | 0.6916 | 0.8695 | -0.3665 | 0.036            |
| H(25) | 0.6831 | 0.7750 | -0.2581 | 0.034            |
| H(26) | 0.7652 | 0.7786 | -0.0925 | 0.031            |
| H(2)  | 0.9689 | 0.6177 | 0.1086  | 0.030            |
| H(3)  | 0.9733 | 0.7590 | 0.0738  | 0.029            |
| H(4a) | 0.9990 | 0.7373 | 0.4314  | 0.032            |
| H(4b) | 1.0756 | 0.7506 | 0.4224  | 0.032            |
| H(4c) | 1.0525 | 0.6687 | 0.4379  | 0.032            |
| H(5a) | 1.0000 | 0.5379 | 0.2500  | 0.040            |
| H(5b) | 0.9843 | 0.5695 | 0.3449  | 0.040            |
| H(5c) | 1.0736 | 0.5613 | 0.3260  | 0.040            |

**Table S19.** Hydrogen Atom Coordinates and Equivalent Isotropic Displacement Parameters  $(Å^2)$  for  $[Fe(TPP)(CO)(1,2-DiMeIm)]^a$ 

<sup>*a*</sup>U(eq) is defined as one third of the trace of the orthogonalized  $\mathbf{U}_{ij}$  tensor the estimated standard deviations of the least significant digits are given in parentheses.

# **Supporting Information**

| formula                                 | $C_{55}H_{40}FeN_6O$                              |
|-----------------------------------------|---------------------------------------------------|
| FW, amu                                 | 856.78                                            |
| $a, \mathrm{\AA}$                       | 9.6313(19)                                        |
| b, Å                                    | 13.189(3)                                         |
| $c, \mathrm{\AA}$                       | 17.622(4)                                         |
| $\alpha$ , deg                          | 75.25(3)                                          |
| $eta,\deg$                              | 88.95(3)                                          |
| $\gamma, \deg$                          | 81.52(3)                                          |
| $V,  \mathrm{\AA}^3$                    | 2140.6(7)                                         |
| space group                             | $P\bar{1}$                                        |
| Z                                       | 2                                                 |
| $D_c, g/cm^3$                           | 1.329                                             |
| F(000)                                  | 892                                               |
| $\mu, \mathrm{mm}^{-1}$                 | 0.402                                             |
| crystal dimensions, mm                  | $0.29 \times 0.26 \times 0.10$                    |
| radiation                               | ${\rm MoK}\alpha,\bar{\lambda}=0.71073~{\rm \AA}$ |
| temperature, K                          | 100(2)                                            |
| diffractometer                          | Bruker Apex CCD                                   |
| $\theta$ range for collected data, deg  | 1.61 - 33.84                                      |
| index range                             | $-14 \le h \le 14$                                |
|                                         | $-20 \le k \le 20$                                |
|                                         | $-27 \le l \le 27$                                |
| total data collected                    | 45838                                             |
| absorption correction                   | Semi-empirical fromequiv                          |
| relative transmission coefficients (I)  | 0.9610 and $0.8924$                               |
| unique data                             | 15633 $(R_{\rm int} = 0.035)$                     |
| unique observed data $[I > 2\sigma(I)]$ | 11562                                             |
| refinement method                       | Full-matrix least-squares on $F^2$                |
| data/restraints/parameters              | 12321/0/600                                       |
| goodness-of-fit (pased on $F^2$ )       | 1.024                                             |
| final $R$ indices $[I > 2\sigma(I)]$    | $R_1 = 0.0459, wR_2 = 0.1155$                     |
| final $R$ indices (all data)            | $R_1 = 0.0615, wR_2 = 0.1259$                     |

**Table S20.** Complete Crystallographic Details for  $[Fe(TPP)(CO)(1-MeIm)] \cdot C_6H_6$ 

| atom  | x           | y            | 2            | $U(\mathrm{eq})$ |
|-------|-------------|--------------|--------------|------------------|
| Fe    | 0.25690(2)  | 0.15564(2)   | 0.21231(1)   | 0.0149(1)        |
| N(1)  | 0.26909(13) | 0.15431(10)  | 0.09911(7)   | 0.0165(2)        |
| N(2)  | 0.26855(13) | 0.31192(10)  | 0.18337(7)   | 0.0159(2)        |
| N(3)  | 0.25526(13) | 0.15608(10)  | 0.32583(7)   | 0.0164(2)        |
| N(4)  | 0.24186(13) | 0.00042(10)  | 0.24047(7)   | 0.0169(2)        |
| C(a1) | 0.26521(15) | 0.06914(12)  | 0.06747(9)   | 0.0172(3)        |
| C(a2) | 0.27501(15) | 0.24008(12)  | 0.03601(9)   | 0.0168(3)        |
| C(a3) | 0.26269(15) | 0.37776(12)  | 0.10883(9)   | 0.0169(3)        |
| C(a4) | 0.26171(16) | 0.37784(12)  | 0.23323(9)   | 0.0172(3)        |
| C(a5) | 0.26727(16) | 0.23976(12)  | 0.35742(9)   | 0.0172(3)        |
| C(a6) | 0.25622(16) | 0.06901(12)  | 0.38840(9)   | 0.0174(3)        |
| C(a7) | 0.22679(16) | -0.06236(12) | 0.31460(9)   | 0.0186(3)        |
| C(a8) | 0.23072(16) | -0.06268(12) | 0.19005(9)   | 0.0181(3)        |
| C(b1) | 0.27476(16) | 0.10180(13)  | -0.01677(9)  | 0.0192(3)        |
| C(b2) | 0.27991(16) | 0.20715(12)  | -0.03638(9)  | 0.0186(3)        |
| C(b3) | 0.24941(17) | 0.48734(12)  | 0.11182(9)   | 0.0199(3)        |
| C(b4) | 0.24870(17) | 0.48753(12)  | 0.18873(9)   | 0.0201(3)        |
| C(b5) | 0.28253(17) | 0.20323(13)  | 0.44178(9)   | 0.0206(3)        |
| C(b6) | 0.27521(17) | 0.09774(13)  | 0.46094(9)   | 0.0206(3)        |
| C(b7) | 0.20465(18) | -0.16734(13) | 0.31067(10)  | 0.0226(3)        |
| C(b8) | 0.20707(18) | -0.16745(13) | 0.23374(9)   | 0.0223(3)        |
| C(m1) | 0.26864(15) | 0.34533(12)  | 0.03918(9)   | 0.0169(3)        |
| C(m2) | 0.26643(16) | 0.34532(12)  | 0.31515(9)   | 0.0174(3)        |
| C(m3) | 0.23792(16) | -0.03247(12) | 0.38438(9)   | 0.0179(3)        |
| C(m4) | 0.24475(15) | -0.03279(12) | 0.10893(9)   | 0.0173(3)        |
| C(11) | 0.26356(16) | 0.42873(12)  | -0.03692(9)  | 0.0177(3)        |
| C(12) | 0.13571(17) | 0.46896(13)  | -0.07710(10) | 0.0225(3)        |
| C(13) | 0.12882(19) | 0.54849(13)  | -0.14685(10) | 0.0247(3)        |
| C(14) | 0.24942(19) | 0.58862(13)  | -0.17670(9)  | 0.0238(3)        |
| C(15) | 0.37692(18) | 0.54803(14)  | -0.13786(10) | 0.0252(3)        |
| C(16) | 0.38409(17) | 0.46811(13)  | -0.06837(9)  | 0.0229(3)        |
| C(21) | 0.27535(17) | 0.42647(12)  | 0.36005(9)   | 0.0201(3)        |
| C(22) | 0.1736(2)   | 0.44509(15)  | 0.41427(11)  | 0.0301(4)        |
| C(23) | 0.1877(2)   | 0.51594(17)  | 0.45922(12)  | 0.0390(5)        |

**Table S21.** Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>) for  $[Fe(TPP)(CO)(1-MeIm)] \cdot C_6 H_6{}^a$ 

| atom            | x            | y            | 2            | U(eq)      |
|-----------------|--------------|--------------|--------------|------------|
| C(24)           | 0.3026(3)    | 0.56884(15)  | 0.45060(11)  | 0.0373(5)  |
| C(25)           | 0.4029(2)    | 0.55243(14)  | 0.39616(11)  | 0.0324(4)  |
| C(26)           | 0.38943(19)  | 0.48185(13)  | 0.35086(10)  | 0.0241(3)  |
| C(31)           | 0.22982(17)  | -0.11471(12) | 0.45999(9)   | 0.0186(3)  |
| C(32)           | 0.10087(19)  | -0.13506(15) | 0.49228(11)  | 0.0293(4)  |
| C(33)           | 0.0947(2)    | -0.21262(17) | 0.56218(11)  | 0.0352(4)  |
| C(34)           | 0.2167(2)    | -0.27040(14) | 0.59980(10)  | 0.0312(4)  |
| C(35)           | 0.3450(2)    | -0.24936(14) | 0.56851(10)  | 0.0279(4)  |
| C(36)           | 0.35198(18)  | -0.17177(13) | 0.49908(10)  | 0.0235(3)  |
| C(41)           | 0.23239(16)  | -0.11153(12) | 0.06200(9)   | 0.0178(3)  |
| C(42)           | 0.10274(17)  | -0.13955(13) | 0.04978(10)  | 0.0224(3)  |
| C(43)           | 0.09072(18)  | -0.20855(14) | 0.00304(10)  | 0.0246(3)  |
| C(44)           | 0.20793(18)  | -0.25054(12) | -0.03207(9)  | 0.0219(3)  |
| C(45)           | 0.33773(18)  | -0.22388(13) | -0.02008(10) | 0.0239(3)  |
| C(46)           | 0.34990(17)  | -0.15484(13) | 0.02694(10)  | 0.0229(3)  |
| C(1)            | 0.07229(17)  | 0.18184(12)  | 0.20742(9)   | 0.0189(3)  |
| O(1)            | -0.04732(13) | 0.19476(10)  | 0.20664(8)   | 0.0311(3)  |
| C(2)            | 0.55898(16)  | 0.05827(13)  | 0.18906(9)   | 0.0204(3)  |
| $\mathrm{C}(3)$ | 0.68819(18)  | 0.10020(15)  | 0.27313(10)  | 0.0270(4)  |
| C(4)            | 0.55306(18)  | 0.14518(16)  | 0.27709(11)  | 0.0291(4)  |
| C(5)            | 0.81569(17)  | -0.01431(14) | 0.19099(10)  | 0.0257(3)  |
| N(5)            | 0.47112(13)  | 0.11882(10)  | 0.22381(7)   | 0.0177(2)  |
| N(6)            | 0.69125(14)  | 0.04510(11)  | 0.21667(8)   | 0.0196(3)  |
| C(51)           | 0.8338(5)    | 0.6519(4)    | 0.3012(3)    | 0.0479(11) |
| C(52)           | 0.8306(6)    | 0.7246(5)    | 0.3511(3)    | 0.0559(12) |
| C(53)           | 0.7121(5)    | 0.7983(3)    | 0.3512(2)    | 0.0362(9)  |
| C(54)           | 0.5969(4)    | 0.8021(3)    | 0.3030(2)    | 0.0329(9)  |
| C(55)           | 0.6014(5)    | 0.7339(4)    | 0.2557(2)    | 0.0358(9)  |
| C(56)           | 0.7149(5)    | 0.6590(3)    | 0.2555(2)    | 0.0340(9)  |
| C(61)           | 0.5937(9)    | 0.7744(8)    | 0.2890(6)    | 0.062(2)   |
| C(62)           | 0.6636(8)    | 0.8067(5)    | 0.3391(4)    | 0.0367(14) |
| C(63)           | 0.8033(7)    | 0.7656(6)    | 0.3580(3)    | 0.0385(14) |
| C(64)           | 0.8705(7)    | 0.6844(5)    | 0.3244(4)    | 0.0440(15) |
| C(65)           | 0.7852(9)    | 0.6521(5)    | 0.2717(5)    | 0.0497(16) |

Table S21. Continued

Table S21. Continued

| atom  | x          | y         | z         | $U(\mathrm{eq})$ |
|-------|------------|-----------|-----------|------------------|
| C(66) | 0.6524(11) | 0.6987(8) | 0.2567(5) | 0.065(2)         |

<sup>*a*</sup>U(eq) is defined as one third of the trace of the orthogonalized  $\mathbf{U}_{ij}$  tensor. The estimated standard deviations of the least significant digits are given in parentheses.

| bond              | length (Å) | bond                       | length (Å) |
|-------------------|------------|----------------------------|------------|
| Fe–C(1)           | 1.7600(17) | C(24)-H(24)                | 0.9500     |
| ${ m Fe-N(1)}$    | 2.0005(13) | $\rm C(25)–C(26)$          | 1.392(2)   |
| Fe-N(3)           | 2.0016(13) | $\rm C(25)–H(25)$          | 0.9500     |
| Fe-N(4)           | 2.0064(14) | $\rm C(26)-H(26)$          | 0.9500     |
| ${ m Fe-N(2)}$    | 2.0129(14) | C(31)-C(36)                | 1.389(2)   |
| Fe-N(5)           | 2.0503(14) | C(31)-C(32)                | 1.390(2)   |
| m N(1)- m C(a2)   | 1.377(2)   | C(32)-C(33)                | 1.393(2)   |
| N(1)– $C(a1)$     | 1.3807(19) | C(32)– $H(32)$             | 0.9500     |
| N(2)– $C(a3)$     | 1.3747(19) | C(33)-C(34)                | 1.382(3)   |
| N(2)-C(a4)        | 1.3792(19) | C(33)-H(33)                | 0.9500     |
| N(3)– $C(a6)$     | 1.3737(19) | C(34)-C(35)                | 1.381(3)   |
| m N(3)- m C(a5)   | 1.3763(19) | C(34)-H(34)                | 0.9500     |
| N(4)-C(a7)        | 1.375(2)   | C(35)-C(36)                | 1.389(2)   |
| N(4)-C(a8)        | 1.3783(19) | C(35)– $H(35)$             | 0.9500     |
| C(a1)-C(m4)       | 1.397(2)   | C(36)– $H(36)$             | 0.9500     |
| C(a1)– $C(b1)$    | 1.442(2)   | C(41)-C(42)                | 1.389(2)   |
| C(a2)-C(m1)       | 1.396(2)   | C(41)-C(46)                | 1.397(2)   |
| C(a2)– $C(b2)$    | 1.446(2)   | C(42)-C(43)                | 1.392(2)   |
| C(a3)-C(m1)       | 1.396(2)   | C(42)– $H(42)$             | 0.9500     |
| $\rm C(a3)–C(b3)$ | 1.446(2)   | C(43)-C(44)                | 1.389(2)   |
| C(a4)– $C(m2)$    | 1.397(2)   | C(43)-H(43)                | 0.9500     |
| C(a4)-C(b4)       | 1.448(2)   | C(44)-C(45)                | 1.381(2)   |
| C(a5)-C(m2)       | 1.401(2)   | C(44) - H(44)              | 0.9500     |
| m C(a5)- m C(b5)  | 1.444(2)   | C(45)-C(46)                | 1.396(2)   |
| C(a6)-C(m3)       | 1.395(2)   | $\rm C(45)–H(45)$          | 0.9500     |
| C(a6)-C(b6)       | 1.445(2)   | m C(46)- m H(46)           | 0.9500     |
| C(a7)-C(m3)       | 1.394(2)   | ${ m C(1)-O(1)}$           | 1.139(2)   |
| C(a7)-C(b7)       | 1.451(2)   | m C(2)–N(5)                | 1.327(2)   |
| C(a8)– $C(m4)$    | 1.393(2)   | ${ m C}(2) – { m N}(6)$    | 1.343(2)   |
| m C(a8)- m C(b8)  | 1.449(2)   | $\rm C(2){-}H(2)$          | 0.9500     |
| C(b1)– $C(b2)$    | 1.352(2)   | ${ m C}(3){ m -}{ m C}(4)$ | 1.357(2)   |
| C(b1)-H(b1)       | 0.9500     | ${ m C}(3) – { m N}(6)$    | 1.371(2)   |
| C(b2)-H(b2)       | 0.9500     | C(3)– $H(3)$               | 0.9500     |
| C(b3)-C(b4)       | 1.356(2)   | m C(4)–N(5)                | 1.378(2)   |

Table S22. Bond Lengths for  $[Fe(TPP)(CO)(1-MeIm)] \cdot C_6 H_6{}^a$ 

| bond                                  | length (Å) | bond                          | length (Å) |  |
|---------------------------------------|------------|-------------------------------|------------|--|
| C(b3)-H(b3)                           | 0.9500     | ${ m C}(4){ m -H}(4)$         | 0.9500     |  |
| C(b4)-H(b4)                           | 0.9500     | ${ m C}(5)	ext{-}{ m N}(6)$   | 1.462(2)   |  |
| C(b5)-C(b6)                           | 1.358(2)   | $ m C(5){-}H(5a)$             | 0.9800     |  |
| C(b5)-H(b5)                           | 0.9500     | $ m C(5){-}H(5b)$             | 0.9800     |  |
| C(b6)-H(b6)                           | 0.9500     | $ m C(5){-}H(5c)$             | 0.9800     |  |
| C(b7)-C(b8)                           | 1.356(2)   | m C(51)- m C(52)              | 1.454(7)   |  |
| $\rm C(b7)-H(b7)$                     | 0.9500     | m C(51)- m C(56)              | 1.390(6)   |  |
| C(b8)-H(b8)                           | 0.9500     | C(51)– $H(51)$                | 0.9500     |  |
| C(m1)-C(11)                           | 1.499(2)   | ${ m C}(52){ m -}{ m C}(53)$  | 1.385(7)   |  |
| C(m2)-C(21)                           | 1.496(2)   | ${ m C}(52){ m -}{ m H}(52)$  | 0.9500     |  |
| C(m3)-C(31)                           | 1.498(2)   | C(53)-C(54)                   | 1.397(6)   |  |
| C(m4)-C(41)                           | 1.501(2)   | ${ m C}(53){ m -}{ m H}(53)$  | 0.9500     |  |
| C(11)-C(16)                           | 1.390(2)   | m C(54)– m C(55)              | 1.369(6)   |  |
| C(11)-C(12)                           | 1.395(2)   | C(54)-H(54)                   | 0.9500     |  |
| C(12)-C(13)                           | 1.393(2)   | ${ m C}(55){ m -}{ m C}(56)$  | 1.362(5)   |  |
| C(12)-H(12)                           | 0.9500     | C(55)-H(55)                   | 0.9500     |  |
| C(13)-C(14)                           | 1.387(3)   | ${ m C}(56){ m -H}(56)$       | 0.9500     |  |
| $\rm C(13)–H(13)$                     | 0.9500     | ${ m C}(61) – { m C}(62)$     | 1.309(11)  |  |
| C(14)-C(15)                           | 1.383(2)   | m C(61)- m C(66)              | 1.324(13)  |  |
| C(14)-H(14)                           | 0.9500     | ${ m C}(61)	ext{-}{ m H}(61)$ | 0.9500     |  |
| m C(15)- m C(16)                      | 1.393(2)   | ${ m C}(62){ m -}{ m C}(63)$  | 1.387(9)   |  |
| m C(15)-H(15)                         | 0.9500     | ${ m C}(62){ m -}{ m H}(62)$  | 0.9500     |  |
| m C(16)- m H(16)                      | 0.9500     | ${ m C}(63){ m -}{ m C}(64)$  | 1.422(9)   |  |
| $\mathrm{C}(21)	ext{-}\mathrm{C}(26)$ | 1.392(2)   | ${ m C}(63)	ext{-}{ m H}(63)$ | 0.9500     |  |
| $\rm C(21)–C(22)$                     | 1.395(2)   | m C(64)- m C(65)              | 1.433(10)  |  |
| m C(22)- m C(23)                      | 1.392(3)   | m C(64)- m H(64)              | 0.9500     |  |
| $\rm C(22)–H(22)$                     | 0.9500     | ${ m C}(65){ m -}{ m C}(66)$  | 1.335(12)  |  |
| C(23)-C(24)                           | 1.379(3)   | ${ m C}(65){ m -H}(65)$       | 0.9500     |  |
| ${ m C}(23){ m -H}(23)$               | 0.9500     | ${ m C}(66){ m -H}(66)$       | 0.9500     |  |
| C(24)-C(25)                           | 1.382(3)   |                               |            |  |

Table S22. Continued

| angle                    | degree     | angle             | degree     |
|--------------------------|------------|-------------------|------------|
| C(1)–Fe– $N(1)$          | 92.33(7)   | C(23)-C(22)-H(22) | 119.7      |
| C(1)–Fe– $N(3)$          | 90.55(7)   | C(21)-C(22)-H(22) | 119.7      |
| N(1)–Fe– $N(3)$          | 177.12(5)  | C(24)-C(23)-C(22) | 120.30(19) |
| C(1)–Fe– $N(4)$          | 88.23(7)   | C(24)-C(23)-H(23) | 119.8      |
| N(1)–Fe– $N(4)$          | 89.46(6)   | C(22)-C(23)-H(23) | 119.8      |
| N(3)–Fe– $N(4)$          | 90.85(6)   | C(23)-C(24)-C(25) | 119.67(17) |
| C(1)–Fe– $N(2)$          | 90.84(7)   | C(23)-C(24)-H(24) | 120.2      |
| N(1)–Fe– $N(2)$          | 90.28(6)   | C(25)-C(24)-H(24) | 120.2      |
| N(3)–Fe– $N(2)$          | 89.45(6)   | C(24)-C(25)-C(26) | 120.38(18) |
| N(4)–Fe– $N(2)$          | 179.02(5)  | C(24)-C(25)-H(25) | 119.8      |
| C(1)–Fe– $N(5)$          | 176.78(6)  | C(26)-C(25)-H(25) | 119.8      |
| N(1)–Fe– $N(5)$          | 89.95(6)   | C(21)-C(26)-C(25) | 120.50(17) |
| N(3)–Fe– $N(5)$          | 87.19(6)   | C(21)-C(26)-H(26) | 119.8      |
| N(4)–Fe– $N(5)$          | 89.51(6)   | C(25)-C(26)-H(26) | 119.8      |
| N(2)–Fe– $N(5)$          | 91.43(6)   | C(36)-C(31)-C(32) | 118.97(15) |
| C(a2)– $N(1)$ – $C(a1)$  | 105.58(12) | C(36)-C(31)-C(m3) | 120.15(15) |
| C(a2)-N(1)-Fe            | 126.82(10) | C(32)-C(31)-C(m3) | 120.88(14) |
| C(a1)-N(1)-Fe            | 127.50(10) | C(31)-C(32)-C(33) | 120.35(17) |
| C(a3)-N(2)-C(a4)         | 105.51(12) | C(31)-C(32)-H(32) | 119.8      |
| C(a3)-N(2)-Fe            | 126.51(10) | C(33)-C(32)-H(32) | 119.8      |
| C(a4)-N(2)-Fe            | 127.28(10) | C(34)-C(33)-C(32) | 120.23(18) |
| C(a6)-N(3)-C(a5)         | 106.00(12) | C(34)-C(33)-H(33) | 119.9      |
| C(a6)-N(3)-Fe            | 126.05(10) | C(32)-C(33)-H(33) | 119.9      |
| C(a5)-N(3)-Fe            | 127.65(10) | C(35)-C(34)-C(33) | 119.58(16) |
| C(a7)-N(4)-C(a8)         | 105.76(12) | C(35)-C(34)-H(34) | 120.2      |
| C(a7)-N(4)-Fe            | 126.35(11) | C(33)-C(34)-H(34) | 120.2      |
| C(a8)-N(4)-Fe            | 127.61(10) | C(34)-C(35)-C(36) | 120.46(17) |
| N(1)-C(a1)-C(m4)         | 125.98(14) | C(34)-C(35)-H(35) | 119.8      |
| N(1)-C(a1)-C(b1)         | 110.17(13) | C(36)-C(35)-H(35) | 119.8      |
| C(m4)-C(a1)-C(b1)        | 123.69(14) | C(35)-C(36)-C(31) | 120.38(17) |
| N(1)-C(a2)-C(m1)         | 126.03(14) | C(35)-C(36)-H(36) | 119.8      |
| N(1)-C(a2)-C(b2)         | 110.20(13) | C(31)-C(36)-H(36) | 119.8      |
| C(m1)– $C(a2)$ – $C(b2)$ | 123.66(14) | C(42)-C(41)-C(46) | 118.53(14) |
| N(2)-C(a3)-C(m1)         | 125.69(14) | C(42)-C(41)-C(m4) | 120.63(14) |

Table S23. Bond Angles for  $[\rm{Fe}(\rm{TPP})(\rm{CO})(1\text{-}\rm{MeIm})]\cdot C_6 H_6{}^a$ 

| Table S23. | Continued |
|------------|-----------|
|------------|-----------|

| angle                                 | degree     | angle                                     | degree     |
|---------------------------------------|------------|-------------------------------------------|------------|
| N(2)-C(a3)-C(b3)                      | 110.49(13) | C(46)-C(41)-C(m4)                         | 120.80(14) |
| C(m1)-C(a3)-C(b3)                     | 123.82(14) | C(41)-C(42)-C(43)                         | 120.42(15) |
| N(2)-C(a4)-C(m2)                      | 125.73(14) | C(41)-C(42)-H(42)                         | 119.8      |
| N(2)-C(a4)-C(b4)                      | 110.40(13) | C(43)-C(42)-H(42)                         | 119.8      |
| C(m2)-C(a4)-C(b4)                     | 123.88(14) | C(44)-C(43)-C(42)                         | 120.64(15) |
| N(3)-C(a5)-C(m2)                      | 125.87(14) | C(44)-C(43)-H(43)                         | 119.7      |
| N(3)-C(a5)-C(b5)                      | 110.09(13) | C(42)-C(43)-H(43)                         | 119.7      |
| C(m2)-C(a5)-C(b5)                     | 124.04(14) | C(45)-C(44)-C(43)                         | 119.59(15) |
| N(3)-C(a6)-C(m3)                      | 126.02(14) | C(45)-C(44)-H(44)                         | 120.2      |
| N(3)-C(a6)-C(b6)                      | 110.10(13) | C(43)-C(44)-H(44)                         | 120.2      |
| C(m3)-C(a6)-C(b6)                     | 123.85(14) | C(44)-C(45)-C(46)                         | 119.80(15) |
| N(4)-C(a7)-C(m3)                      | 125.54(14) | C(44)-C(45)-H(45)                         | 120.1      |
| N(4)-C(a7)-C(b7)                      | 110.29(14) | C(46)-C(45)-H(45)                         | 120.1      |
| C(m3)-C(a7)-C(b7)                     | 124.09(14) | C(45)-C(46)-C(41)                         | 121.02(15) |
| N(4)-C(a8)-C(m4)                      | 125.66(14) | C(45)-C(46)-H(46)                         | 119.5      |
| N(4)-C(a8)-C(b8)                      | 110.28(13) | C(41)-C(46)-H(46)                         | 119.5      |
| C(m4)-C(a8)-C(b8)                     | 124.02(14) | ${ m O}(1){ m -}{ m C}(1){ m -}{ m Fe}$   | 177.03(15) |
| C(b2)-C(b1)-C(a1)                     | 107.09(14) | ${ m N(5)-C(2)-N(6)}$                     | 112.04(14) |
| C(b2)-C(b1)-H(b1)                     | 126.5      | N(5)-C(2)-H(2)                            | 124.0      |
| C(a1)-C(b1)-H(b1)                     | 126.5      | m N(6)- m C(2)- m H(2)                    | 124.0      |
| C(b1)-C(b2)-C(a2)                     | 106.90(14) | ${ m C}(4) – { m C}(3) – { m N}(6)$       | 106.77(15) |
| C(b1)-C(b2)-H(b2)                     | 126.6      | C(4)-C(3)-H(3)                            | 126.6      |
| C(a2)-C(b2)-H(b2)                     | 126.6      | m N(6)- m C(3)- m H(3)                    | 126.6      |
| C(b4)-C(b3)-C(a3)                     | 106.89(14) | C(3)-C(4)-N(5)                            | 109.57(15) |
| C(b4)-C(b3)-H(b3)                     | 126.6      | ${ m C}(3){ m -}{ m C}(4){ m -}{ m H}(4)$ | 125.2      |
| C(a3)-C(b3)-H(b3)                     | 126.6      | $ m N(5){-}C(4){-}H(4)$                   | 125.2      |
| C(b3)-C(b4)-C(a4)                     | 106.70(14) | ${ m N(6)-C(5)-H(5a)}$                    | 109.5      |
| C(b3)-C(b4)-H(b4)                     | 126.6      | ${ m N(6)-C(5)-H(5b)}$                    | 109.5      |
| C(a4)-C(b4)-H(b4)                     | 126.6      | H(5a)-C(5)-H(5b)                          | 109.5      |
| C(b6)-C(b5)-C(a5)                     | 106.83(14) | m N(6)- m C(5)- m H(5c)                   | 109.5      |
| C(b6)-C(b5)-H(b5)                     | 126.6      | H(5a)-C(5)-H(5c)                          | 109.5      |
| $\rm C(a5)\text{-}C(b5)\text{-}H(b5)$ | 126.6      | H(5b)-C(5)-H(5c)                          | 109.5      |
| C(b5)-C(b6)-C(a6)                     | 106.92(14) | C(2)-N(5)-C(4)                            | 105.02(13) |
| C(b5)-C(b6)-H(b6)                     | 126.5      | $\rm C(2){-}N(5){-}Fe$                    | 129.25(11) |

| angle             | degree     | angle             | degree     |
|-------------------|------------|-------------------|------------|
| C(a6)-C(b6)-H(b6) | 126.5      | C(4)– $N(5)$ –Fe  | 125.46(11) |
| C(b8)-C(b7)-C(a7) | 106.83(14) | C(2)-N(6)-C(3)    | 106.61(13) |
| C(b8)-C(b7)-H(b7) | 126.6      | C(2)-N(6)-C(5)    | 127.22(14) |
| C(a7)-C(b7)-H(b7) | 126.6      | C(3)-N(6)-C(5)    | 126.17(14) |
| C(b7)-C(b8)-C(a8) | 106.84(14) | C(52)-C(51)-C(56) | 117.6(4)   |
| C(b7)-C(b8)-H(b8) | 126.6      | C(52)-C(51)-H(51) | 121.2      |
| C(a8)-C(b8)-H(b8) | 126.6      | C(56)-C(51)-H(51) | 121.2      |
| C(a2)-C(m1)-C(a3) | 123.95(14) | C(53)-C(52)-C(51) | 119.9(5)   |
| C(a2)-C(m1)-C(11) | 117.87(13) | C(53)-C(52)-H(52) | 120.1      |
| C(a3)-C(m1)-C(11) | 118.15(13) | C(51)-C(52)-H(52) | 120.1      |
| C(a4)-C(m2)-C(a5) | 123.18(14) | C(52)-C(53)-C(54) | 119.5(4)   |
| C(a4)-C(m2)-C(21) | 118.54(14) | C(52)-C(53)-H(53) | 120.2      |
| C(a5)-C(m2)-C(21) | 118.26(13) | C(54)-C(53)-H(53) | 120.2      |
| C(a7)-C(m3)-C(a6) | 124.27(14) | C(53)-C(54)-C(55) | 120.2(4)   |
| C(a7)-C(m3)-C(31) | 117.87(14) | C(53)-C(54)-H(54) | 119.9      |
| C(a6)-C(m3)-C(31) | 117.86(14) | C(55)-C(54)-H(54) | 119.9      |
| C(a8)-C(m4)-C(a1) | 123.35(14) | C(54)-C(55)-C(56) | 121.7(4)   |
| C(a8)-C(m4)-C(41) | 119.37(14) | C(54)-C(55)-H(55) | 119.1      |
| C(a1)-C(m4)-C(41) | 117.24(13) | C(56)-C(55)-H(55) | 119.1      |
| C(16)-C(11)-C(12) | 118.86(14) | C(55)-C(56)-C(51) | 121.0(4)   |
| C(16)-C(11)-C(m1) | 121.28(14) | C(55)-C(56)-H(56) | 119.5      |
| C(12)-C(11)-C(m1) | 119.86(14) | C(51)-C(56)-H(56) | 119.5      |
| C(13)-C(12)-C(11) | 120.48(16) | C(62)-C(61)-C(66) | 121.1(9)   |
| C(13)-C(12)-H(12) | 119.8      | C(62)-C(61)-H(61) | 119.5      |
| C(11)-C(12)-H(12) | 119.8      | C(66)-C(61)-H(61) | 119.5      |
| C(14)-C(13)-C(12) | 120.05(16) | C(61)-C(62)-C(63) | 121.2(7)   |
| C(14)-C(13)-H(13) | 120.0      | C(61)-C(62)-H(62) | 119.4      |
| C(12)-C(13)-H(13) | 120.0      | C(63)-C(62)-H(62) | 119.4      |
| C(15)-C(14)-C(13) | 119.81(15) | C(62)-C(63)-C(64) | 119.5(6)   |
| C(15)-C(14)-H(14) | 120.1      | C(62)-C(63)-H(63) | 120.2      |
| C(13)-C(14)-H(14) | 120.1      | C(64)-C(63)-H(63) | 120.3      |
| C(14)-C(15)-C(16) | 120.19(16) | C(65)-C(64)-C(63) | 115.6(6)   |
| C(14)-C(15)-H(15) | 119.9      | C(65)-C(64)-H(64) | 122.2      |
| C(16)-C(15)-H(15) | 119.9      | C(63)-C(64)-H(64) | 122.2      |

Table S23. Continued

| angle             | degree     | angle             | degree   |
|-------------------|------------|-------------------|----------|
| C(11)-C(16)-C(15) | 120.59(15) | C(64)-C(65)-C(66) | 119.8(7) |
| C(11)-C(16)-H(16) | 119.7      | C(64)-C(65)-H(65) | 120.1    |
| C(15)-C(16)-H(16) | 119.7      | C(66)-C(65)-H(65) | 120.1    |
| C(26)-C(21)-C(22) | 118.54(15) | C(65)-C(66)-C(61) | 122.9(9) |
| C(26)-C(21)-C(m2) | 120.25(14) | C(65)-C(66)-H(66) | 118.6    |
| C(22)-C(21)-C(m2) | 121.15(15) | C(61)-C(66)-H(66) | 118.6    |
| C(23)-C(22)-C(21) | 120.58(18) |                   |          |

Table S23. Continued

| atom    | $U_{11}$   | $U_{22}$   | $U_{33}$   | $U_{23}$   | $U_{13}$   | $U_{12}$   |
|---------|------------|------------|------------|------------|------------|------------|
| FeH(3a) | 0.0166(1)  | 0.0139(1)  | 0.0146(1)  | -0.0032(1) | 0.0003(1)  | -0.0045(1) |
| N(1)    | 0.0174(6)  | 0.0164(6)  | 0.0165(6)  | -0.0040(5) | -0.0006(4) | -0.0047(5) |
| N(2)    | 0.0168(6)  | 0.0162(6)  | 0.0149(6)  | -0.0033(4) | 0.0000(4)  | -0.0040(5) |
| N(3)    | 0.0181(6)  | 0.0151(6)  | 0.0164(6)  | -0.0036(5) | 0.0007(4)  | -0.0045(5) |
| N(4)    | 0.0193(6)  | 0.0160(6)  | 0.0163(6)  | -0.0042(5) | 0.0001(4)  | -0.0050(5) |
| C(a1)   | 0.0164(6)  | 0.0184(7)  | 0.0177(7)  | -0.0056(5) | 0.0001(5)  | -0.0039(5) |
| C(a2)   | 0.0163(6)  | 0.0188(7)  | 0.0156(6)  | -0.0035(5) | -0.0005(5) | -0.0049(5) |
| C(a3)   | 0.0164(6)  | 0.0152(7)  | 0.0189(7)  | -0.0032(5) | -0.0009(5) | -0.0039(5) |
| C(a4)   | 0.0183(7)  | 0.0148(7)  | 0.0188(7)  | -0.0040(5) | -0.0003(5) | -0.0039(5) |
| C(a5)   | 0.0185(7)  | 0.0185(7)  | 0.0156(6)  | -0.0055(5) | 0.0017(5)  | -0.0039(5) |
| C(a6)   | 0.0184(7)  | 0.0186(7)  | 0.0152(6)  | -0.0031(5) | 0.0011(5)  | -0.0049(5) |
| C(a7)   | 0.0215(7)  | 0.0148(7)  | 0.0190(7)  | -0.0025(5) | 0.0006(5)  | -0.0046(5) |
| C(a8)   | 0.0203(7)  | 0.0154(7)  | 0.0195(7)  | -0.0047(5) | -0.0008(5) | -0.0052(5) |
| C(b1)   | 0.0203(7)  | 0.0214(7)  | 0.0174(7)  | -0.0065(6) | 0.0014(5)  | -0.0053(6) |
| C(b2)   | 0.0200(7)  | 0.0208(7)  | 0.0161(7)  | -0.0053(5) | 0.0011(5)  | -0.0049(6) |
| C(b3)   | 0.0237(7)  | 0.0154(7)  | 0.0204(7)  | -0.0034(5) | -0.0023(6) | -0.0038(6) |
| C(b4)   | 0.0240(7)  | 0.0147(7)  | 0.0215(7)  | -0.0046(6) | -0.0019(6) | -0.0028(6) |
| C(b5)   | 0.0263(8)  | 0.0204(7)  | 0.0168(7)  | -0.0059(6) | 0.0010(6)  | -0.0066(6) |
| C(b6)   | 0.0265(8)  | 0.0211(7)  | 0.0148(7)  | -0.0037(6) | 0.0008(6)  | -0.0072(6) |
| C(b7)   | 0.0307(8)  | 0.0156(7)  | 0.0222(7)  | -0.0035(6) | 0.0002(6)  | -0.0078(6) |
| C(b8)   | 0.0300(8)  | 0.0157(7)  | 0.0225(8)  | -0.0049(6) | -0.0009(6) | -0.0076(6) |
| C(m1)   | 0.0160(6)  | 0.0178(7)  | 0.0159(6)  | -0.0013(5) | -0.0019(5) | -0.0040(5) |
| C(m2)   | 0.0182(7)  | 0.0173(7)  | 0.0181(7)  | -0.0063(5) | 0.0014(5)  | -0.0043(5) |
| C(m3)   | 0.0191(7)  | 0.0166(7)  | 0.0173(7)  | -0.0020(5) | 0.0008(5)  | -0.0043(5) |
| C(m4)   | 0.0165(6)  | 0.0173(7)  | 0.0192(7)  | -0.0060(5) | 0.0000(5)  | -0.0038(5) |
| C(11)   | 0.0221(7)  | 0.0155(7)  | 0.0152(6)  | -0.0028(5) | -0.0005(5) | -0.0039(5) |
| C(12)   | 0.0231(7)  | 0.0207(8)  | 0.0228(8)  | -0.0028(6) | -0.0024(6) | -0.0046(6) |
| C(13)   | 0.0290(8)  | 0.0212(8)  | 0.0219(8)  | -0.0029(6) | -0.0072(6) | -0.0006(6) |
| C(14)   | 0.0342(9)  | 0.0195(7)  | 0.0156(7)  | -0.0023(6) | 0.0002(6)  | -0.0013(6) |
| C(15)   | 0.0273(8)  | 0.0241(8)  | 0.0214(8)  | -0.0005(6) | 0.0052(6)  | -0.0052(6) |
| C(16)   | 0.0222(7)  | 0.0231(8)  | 0.0208(7)  | -0.0006(6) | -0.0002(6) | -0.0041(6) |
| C(21)   | 0.0263(8)  | 0.0165(7)  | 0.0182(7)  | -0.0053(5) | -0.0014(6) | -0.0036(6) |
| C(22)   | 0.0351(9)  | 0.0280(9)  | 0.0320(9)  | -0.0158(7) | 0.0084(7)  | -0.0069(7) |
| C(23)   | 0.0564(13) | 0.0330(10) | 0.0332(10) | -0.0198(8) | 0.0111(9)  | -0.0056(9) |

**Table S24.** Anisotropic Displacement Parameters (Å2) for  $[Fe(TPP)(CO)(1-MeIm)] \cdot C_6 H_6{}^a$ 

| atom  | $U_{11}$   | $U_{22}$   | $U_{33}$  | $U_{23}$   | $U_{13}$   | $U_{12}$   |
|-------|------------|------------|-----------|------------|------------|------------|
| C(24) | 0.0659(14) | 0.0233(9)  | 0.0267(9) | -0.0120(7) | -0.0043(9) | -0.0091(9) |
| C(25) | 0.0491(11) | 0.0221(8)  | 0.0286(9) | -0.0053(7) | -0.0077(8) | -0.0148(8) |
| C(26) | 0.0313(8)  | 0.0190(7)  | 0.0225(8) | -0.0038(6) | -0.0017(6) | -0.0073(6) |
| C(31) | 0.0250(7)  | 0.0154(7)  | 0.0159(7) | -0.0040(5) | -0.0006(5) | -0.0051(6) |
| C(32) | 0.0250(8)  | 0.0322(9)  | 0.0253(8) | 0.0029(7)  | 0.0021(6)  | -0.0052(7) |
| C(33) | 0.0375(10) | 0.0383(11) | 0.0257(9) | 0.0028(8)  | 0.0082(7)  | -0.0130(8) |
| C(34) | 0.0530(12) | 0.0241(8)  | 0.0163(7) | -0.0014(6) | -0.0015(7) | -0.0109(8) |
| C(35) | 0.0398(10) | 0.0205(8)  | 0.0219(8) | -0.0035(6) | -0.0107(7) | -0.0013(7) |
| C(36) | 0.0268(8)  | 0.0203(8)  | 0.0229(8) | -0.0039(6) | -0.0026(6) | -0.0043(6) |
| C(41) | 0.0206(7)  | 0.0164(7)  | 0.0169(7) | -0.0041(5) | -0.0003(5) | -0.0042(5) |
| C(42) | 0.0195(7)  | 0.0242(8)  | 0.0274(8) | -0.0120(6) | 0.0038(6)  | -0.0059(6) |
| C(43) | 0.0215(7)  | 0.0262(8)  | 0.0308(9) | -0.0135(7) | -0.0008(6) | -0.0074(6) |
| C(44) | 0.0297(8)  | 0.0164(7)  | 0.0204(7) | -0.0062(6) | -0.0012(6) | -0.0029(6) |
| C(45) | 0.0247(8)  | 0.0195(8)  | 0.0277(8) | -0.0083(6) | 0.0035(6)  | -0.0007(6) |
| C(46) | 0.0185(7)  | 0.0216(8)  | 0.0307(8) | -0.0098(6) | 0.0017(6)  | -0.0041(6) |
| C(1)  | 0.0251(8)  | 0.0140(7)  | 0.0179(7) | -0.0032(5) | 0.0007(5)  | -0.0056(6) |
| O(1)  | 0.0199(6)  | 0.0301(7)  | 0.0407(7) | -0.0043(6) | 0.0008(5)  | -0.0041(5) |
| C(2)  | 0.0211(7)  | 0.0229(8)  | 0.0189(7) | -0.0076(6) | -0.0004(5) | -0.0045(6) |
| C(3)  | 0.0215(8)  | 0.0382(10) | 0.0278(8) | -0.0182(7) | 0.0008(6)  | -0.0075(7) |
| C(4)  | 0.0213(8)  | 0.0395(10) | 0.0355(9) | -0.0246(8) | 0.0016(7)  | -0.0069(7) |
| C(5)  | 0.0221(8)  | 0.0284(9)  | 0.0283(8) | -0.0121(7) | 0.0016(6)  | -0.0009(6) |
| N(5)  | 0.0198(6)  | 0.0173(6)  | 0.0174(6) | -0.0051(5) | 0.0017(5)  | -0.0062(5) |
| N(6)  | 0.0193(6)  | 0.0201(6)  | 0.0205(6) | -0.0066(5) | 0.0009(5)  | -0.0032(5) |

Table S24. Continued

<sup>*a*</sup>The estimated standard deviations of the least significant digits are given in parentheses. The anisotropic displacement factor exponent takes the form:  $-2 \pi [h^2 U_{11} + ... + 2 h k a^* b^* U_{12}]$ .

| atom  | x      | y       | z       | $U(\mathrm{eq})$ |
|-------|--------|---------|---------|------------------|
| H(b1  | 0.2770 | 0.0576  | -0.0519 | 0.023            |
| H(b2  | 0.2857 | 0.2512  | -0.0879 | 0.022            |
| H(b3) | 0.2425 | 0.5477  | 0.0682  | 0.024            |
| H(b4  | 0.2411 | 0.5479  | 0.2094  | 0.024            |
| H(b5) | 0.2953 | 0.2450  | 0.4771  | 0.025            |
| H(b6  | 0.2814 | 0.0516  | 0.5123  | 0.025            |
| H(b7) | 0.1911 | -0.2250 | 0.3537  | 0.027            |
| H(b8) | 0.1955 | -0.2252 | 0.2125  | 0.027            |
| H(12) | 0.0528 | 0.4419  | -0.0567 | 0.027            |
| H(13) | 0.0414 | 0.5752  | -0.1740 | 0.030            |
| H(14) | 0.2445 | 0.6438  | -0.2237 | 0.029            |
| H(15) | 0.4598 | 0.5748  | -0.1586 | 0.030            |
| H(16) | 0.4721 | 0.4403  | -0.0422 | 0.027            |
| H(22) | 0.0940 | 0.4091  | 0.4206  | 0.036            |
| H(23) | 0.1179 | 0.5279  | 0.4960  | 0.047            |
| H(24) | 0.3128 | 0.6163  | 0.4819  | 0.045            |
| H(25) | 0.4815 | 0.5895  | 0.3896  | 0.039            |
| H(26) | 0.4587 | 0.4714  | 0.3134  | 0.029            |
| H(32) | 0.0166 | -0.0959 | 0.4665  | 0.035            |
| H(33) | 0.0062 | -0.2258 | 0.5840  | 0.042            |
| H(34) | 0.2124 | -0.3243 | 0.6469  | 0.037            |
| H(35) | 0.4291 | -0.2882 | 0.5947  | 0.033            |
| H(36) | 0.4408 | -0.1576 | 0.4782  | 0.028            |
| H(42) | 0.0217 | -0.1114 | 0.0735  | 0.027            |
| H(43) | 0.0015 | -0.2271 | -0.0049 | 0.030            |
| H(44) | 0.1989 | -0.2973 | -0.0641 | 0.026            |
| H(45) | 0.4185 | -0.2524 | -0.0438 | 0.029            |
| H(46) | 0.4395 | -0.1370 | 0.0352  | 0.027            |
| H(2)  | 0.5316 | 0.0278  | 0.1493  | 0.024            |
| H(3)  | 0.7657 | 0.1058  | 0.3036  | 0.032            |
| H(4)  | 0.5200 | 0.1882  | 0.3113  | 0.035            |
| H(5a) | 0.7938 | -0.0827 | 0.1862  | 0.039            |
| H(5b) | 0.8922 | -0.0263 | 0.2296  | 0.039            |
| H(5c) | 0.8445 | 0.0263  | 0.1400  | 0.039            |

**Table S25.** Hydrogen Atom Coordinates and Equivalent Isotropic Displacement Parameters(Ų) for  $[Fe(TPP)(CO)(1-MeIm)] \cdot C_6 H_6{}^a$ 

| atom             | x      | y      | 2      | $U(\mathrm{eq})$ |  |
|------------------|--------|--------|--------|------------------|--|
| H(51)            | 0.9143 | 0.6012 | 0.2999 | 0.057            |  |
| H(52)            | 0.9095 | 0.7216 | 0.3836 | 0.067            |  |
| H(53)            | 0.7093 | 0.8459 | 0.3838 | 0.043            |  |
| $\mathrm{H}(54)$ | 0.5152 | 0.8522 | 0.3030 | 0.040            |  |
| H(55)            | 0.5232 | 0.7389 | 0.2222 | 0.043            |  |
| H(56)            | 0.7128 | 0.6110 | 0.2236 | 0.041            |  |
| H(61)            | 0.4992 | 0.8059 | 0.2755 | 0.075            |  |
| H(62)            | 0.6179 | 0.8591 | 0.3631 | 0.044            |  |
| H(63)            | 0.8537 | 0.7916 | 0.3930 | 0.046            |  |
| H(64)            | 0.9657 | 0.6536 | 0.3361 | 0.053            |  |
| H(65)            | 0.8230 | 0.5977 | 0.2475 | 0.060            |  |
| H(66)            | 0.5976 | 0.6765 | 0.2214 | 0.078            |  |

Table S25. Continued

<sup>*a*</sup>U(eq) is defined as one third of the trace of the orthogonalized  $\mathbf{U}_{ij}$  tensor the estimated standard deviations of the least significant digits are given in parentheses.

| atom | х        | У        | $\mathbf{Z}$ |  |
|------|----------|----------|--------------|--|
| N5   | 0.00000  | 0.00000  | 0.00000      |  |
| C1   | 0.43751  | 0.62032  | 1.08059      |  |
| N6   | -0.38643 | 0.42602  | 2.12490      |  |
| C2   | -1.42304 | -0.37659 | 1.68181      |  |
| C3   | -1.17985 | -0.62875 | 0.37657      |  |
| C4   | 1.66759  | 1.44674  | 1.16572      |  |
| C5   | -0.21245 | 0.88816  | 3.49236      |  |

**Table S26.** Orthogonal Coordinates (Å) of the Rigid Group Imidazole Ring used in the Refinement of  $[Fe(TPP)(CO)(1,2-DiMeIm)] \cdot C_7 H_8$ .

#### Supporting Information

- Table S1. Crystallographic details for  $[Fe(TPP)(CO)(1,2-Me_2Im)]\cdot C_7H_8$ ,  $[Fe(TPP)(CO)-(2-MeHIm)]\cdot C_7H_8$ ,  $[Fe(TPP)(CO)(1,2-Me_2Im)]$  and  $[Fe(TPP)(CO)(1-MeIm)]\cdot C_6H_6$
- Table S2. Complete Crystallographic Details for  $[Fe(TPP)(CO)(1,2-DiMeIm)] \cdot C_7 H_8$ .
- Table S3. Atomic Coordinates and Equivalent Isotropic Displacement Parameters for [Fe(TPP)(CO)(1,2-DiMeIm)]·C<sub>7</sub>H<sub>8</sub>.
- Table S4. Bond Lengths for  $[Fe(TPP)(CO)(1,2-DiMeIm)] \cdot C_7H_8$ .
- Table S5. Bond Angles for  $[Fe(TPP)(CO)(1,2-DiMeIm)] \cdot C_7H_8$ .
- Table S6. Anisotropic Isotropic Displacement Parameters for  $[Fe(TPP)(CO)(1,2-DiMeIm)] \cdot C_7 H_8$ .
- Table S7. Hydrogen Coordinates and Isotropic Displacement Parameters for  $[Fe(TPP)(CO)(1,2-DiMeIm)] \cdot C_7 H_8$ .
- Table S8. Complete Crystallographic Details for  $[Fe(TPP)(CO)(2-MeHIm)] \cdot C_7 H_8$ .
- Table S9. Atomic Coordinates and Equivalent Isotropic Displacement Parameters for  $[Fe(TPP)(CO)(2-MeHIm)] \cdot C_7 H_8$ .
- Table S10. Bond Lengths for  $[Fe(TPP)(CO)(2-MeHIm)] \cdot C_7H_8$ .
- Table S11. Bond Angles for  $[Fe(TPP)(CO)(2-MeHIm)] \cdot C_7 H_8$ .
- Table S12. Anisotropic Isotropic Displacement Parameters for  $[Fe(TPP)(CO)(2-MeHIm)] \cdot C_7 H_8$ .
- Table S13. Hydrogen Coordinates and Isotropic Displacement Parameters for  $[Fe(TPP)(CO)(2-MeHIm)] \cdot C_7 H_8$ .
- Table S14. Complete Crystallographic Details for [Fe(TPP)(CO)(1,2-DiMeIm)].
- Table S15. Atomic Coordinates and Equivalent Isotropic Displacement Parameters for [Fe(TPP)(CO)(1,2-DiMeIm)].
- Table S16. Bond Lengths for [Fe(TPP)(CO)(1,2-DiMeIm)].
- Table S17. Bond Angles for [Fe(TPP)(CO)(1,2-DiMeIm)].
- Table S18. Anisotropic Isotropic Displacement Parameters for [Fe(TPP)(CO)(1,2-DiMeIm)].

- Table S19. Hydrogen Coordinates and Isotropic Displacement Parameters for [Fe(TPP)(CO)(1,2-DiMeIm)].
- Table S20. Complete Crystallographic Details for  $[Fe(TPP)(CO)(1-MeIm)] \cdot C_6 H_6$ .
- Table S21. Atomic Coordinates and Equivalent Isotropic Displacement Parameters for  $[Fe(TPP)(CO)(1-MeIm)] \cdot C_6 H_6.$
- Table S22. Bond Lengths for  $[Fe(TPP)(CO)(1-MeIm)] \cdot C_6H_6$ .
- Table S23. Bond Angles for  $[Fe(TPP)(CO)(1-MeIm)] \cdot C_6H_6$ .
- Table S24. Anisotropic Isotropic Displacement Parameters for  $[Fe(TPP)(CO)(1-MeIm)] \cdot C_6 H_6$ .
- Table S25. Hydrogen Coordinates and Isotropic Displacement Parameters for  $[Fe(TPP)(CO)(1-MeIm)] \cdot C_6 H_6$ .
- Table S26. Orthogonal Coordinates of the Rigid Group Imidazole Ring used in the Refinement of [Fe(TPP)(CO)(1,2-DiMeIm)].

#### **References and Notes**

(1) A linear correlation coefficient, Pearson's R, was used to judge the fit to the data.

$$R = \sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y}) / \sqrt{\sum_{i} (x_{i} - \bar{x})^{2}} \sqrt{\sum_{i} (y_{i} - \bar{y})^{2}}$$