Supplemental Data

Architecture of the 99 bp DNA-Six-Protein Regulatory Complex of the λ *att* **Site**

Xingmin Sun, Dale F. Mierke, Tapan Biswas, Sang Yeol Lee, Arthur Landy and Marta Radman-Livaja

FRET Calculations

The determinations of the efficiency of energy transfer E and R_0 and FRET calculations were performed as described (Radman-Livaja et al., 2005). The efficiency of energy transfer *E* was determined from the extent of donor fluorescence quenching in doubly labeled (donor and acceptor) P-arm bound with six proteins compared with donor-onlylabeled P-arm bound with six proteins. Donor fluorescence quenching due to FRET is described by the following equation:

$$
\frac{I_j^D - I_i^{DA}}{I_j^D} = 1 - \frac{[complex]_i^{DA}}{[complex]_j^D} (1 - rE),
$$
 [1]

where I_i^{DA} is the fluorescence intensity of a doubly labeled P-arm-protein complex, *i.* I_j^D is the florescence intensity of a donor-only labeled P-arm- protein complex. $[complex]$ ^{D_A} and $[complex]$ ^{D} are the total amounts of doubly and singly labeled P-arm-protein complexes in bands *i* and *j*, respectively, and *r* is the efficiency of DNA labeling with the acceptor.

Eq.1 can be written as follows:

$$
I_i^{DA} \frac{[complex]_j^D}{[complex]_i^{DA}} = I_j^D (1 - rE)
$$
 [2]

[complex] values were obtained from a Phosphorimager scan. *E* was obtained from the slope of the line formed by plotting I_i^{DA} [complex] \int_i^D /[complex] \int_i^{DA} *i D j* I_i^{DA} [*complex*] $_i^D$ /[*complex*] $_i^{DA}$ against I_j^D , the slope being equal to (1-*rE*). The value *r* was calculated from the absorbance spectrum of each acceptor-labeled oligonucleotide by using $(A^R(560)\varepsilon^{ssDNA}(260)/A^{ssDNA}$ $(260)\varepsilon^R(560)$, with $\varepsilon^R(560 \text{ nm})=91.000 \text{ M}^1 \text{ cm}^1$.

The distance R between donor and acceptor is calculated from the measured *E* value by using the Förster equation for FRET:

$$
R = R_0 \sqrt[6]{\left(\frac{1}{E} - 1\right)},
$$

where R_0 is the Förster radius determined for each donor-acceptor pair.

R0 **Determination**

R0 was measured by the method of Wu and Brand (Wu and Brand, 1994) for each donoracceptor pair by using the following equations: $R_0 = 0.211 \sqrt[6]{\kappa^2 n^{-4} \phi^D J(\lambda)}$ in Å. κ^2 is the transition dipoles orientation factor estimated to be 2/3 for fluorophores that have a fast rotational diffusion rate in solution (Dale et al., 1979; Dale et al., 1980). *n* is the refractive index of the medium (1.4 for DNA aqueous solutions). ϕ^D is the emission quantum yield of the donor. $J(\lambda)$ [in M⁻¹.cm⁻¹.(nm)⁴] is the overlap integral between the donor emission spectrum and the acceptor absorbance spectrum defined by the equation

$$
J(\lambda) = \frac{\sum_{\Delta\lambda} [F_D(\lambda)\varepsilon_A(\lambda)\lambda^4\Delta\lambda]}{\sum_{\Delta\lambda} [F_D(\lambda)\Delta\lambda]}
$$
, where $F_D(\lambda)$ is the donor emission spectrum and $\varepsilon_A(\lambda)$ is

the spectrum for acceptor extinction coefficients.

 ϕ^D for for each donor-labeled P-arm substrate was calculated as described in (Lakpwicz,

1999) by using the equation $\phi^D = \phi^R \frac{I}{I^R} \frac{\partial D}{\partial D^D}$ *R R* $D = \mathcal{A}^R$ ^D *OD OD I* $\phi^D = \phi^R \frac{I^D}{I^R} \frac{OD^R}{OD^R}$, where ϕ^R is the fluorescence quantum yield of a fluorescence standard (Fluka, Sigma-Aldrich); I^D and I^R are the fluorescence emission intensities of Bodipy-Fl and the standard, respectively; and *OD*^{*D*} and *OD*^{*R*} are absorbance values of Bodipy-Fl at 488 nm and the standard at 496 nm, respectively. $\phi^R =$ 0.95 ± 0.03 at λ ex = 496 nm, when fluorescein is in 0.1 M NaOH (Brannon and Magde, 1978). The Bodipy-Fl-labeled P-arm substrates $(0.8 \mu M)$ or the standard $(0.4 \mu M)$ were dissolved either in buffer A (see *Methods*) or 0.1 M NaOH, respectively. A Beckman DU 520 UV/VIS spectrometer was used to collect the ODs. Fluorescence spectra of the same solutions were recorded on a Fluoromax 2 instrument (Instruments S.A.) by using a slit width of 5 nm. Excitation with Xenon lamp was at 488 or 496 nm for Bodipy-Fl or the standard, respectively. Emission spectra were collected over a wavelength range of 500- 600 nm and corrected for buffer signals and lamp fluctuations. The emission maximum for Bodipy-Fl and the fluorescein standard was at 520 nm when excited at 488 and 496 nm, respectively. Fluorescence intensities were determined by integrating the curve ± 20 nm around the emission peak.

The emission spectra $F_D(\lambda)$ of Bodipy-Fl-labeled P-arm substrates for $J(\lambda)$ calculations were recorded as described in the previous paragraph. $\varepsilon_A(\lambda)$ for acceptor (tetramethylrhodamine, TAMRA) labeled P-arm substrates was obtained from absorbance spectra of 0.50 µM substrate solutions (10 mM Tris-HCl pH 7.5, 50 nM NaCl, 1 mM EDTA) collected in the wavelength range of 190-800 nm on a HP8452A UV/VIS spectrophotometer. Absorbance spectra $A(\lambda)$ were then converted to $\varepsilon_A(\lambda)$

spectra by using the "50 µg/ml rule" (i.e., $\varepsilon_A(\lambda) = \frac{A(\lambda)}{A(260nm)} \varepsilon_{DNA}(260nm)$) $\varepsilon_A(\lambda) = \frac{A(\lambda)}{A(260nm)} \varepsilon_{DNA}(260nm)$, for $\lambda = 500$

to 600 nm and
$$
\varepsilon_{DNA}(260nm) = \frac{50*10^{-3} g/l}{Mr(DNA)*1cm}
$$
, where *Mr(DNA)* is the molecular weight

of the DNA substrate in g/mol . $J(\lambda)$ calculations and spectral data manipulations were done by using Microsoft Excel spreadsheets.

Anisotropy Measurements

Steady-state anisotropies (*r*) were measured for all Bodipy-Fl-labeled or acceptor (TAMRA)-labeled P-arms both unbound and in the context of P-arm-six protein complex. Samples contained the labeled substrates (50 nM) in binding buffer (see above) with or without six proteins. *r* was calculated from $_{vv}$ + 201 $_{vH}$ V *V* V *VH* I_{yy} + 2*GI* $r = \frac{I_{VV} - GI}{I}$ $+2$ $=\frac{I_{VV}-GI_{VH}}{I}$. *I* is the fluorescence

intensity of the sample. The first and second letters in the subscript describe the positions of the excitation and emission polarizers, respectively (*V*, vertical; *H*, horizontal). *G* is the correction factor for differences in sensitivities of the detection system for vertically and horizontally polarized light and is equal to I_{HV}/I_{HH} (Lakowicz, 1999). Fluorescence intensities were measured on a Fluoromax 2 fluoimeter with autopolarizers (Instrument S.A.) using excitation wavelengths of 488 and 560 nm for Bodipy-Fl and TAMRA, respectively. Emission was recorded over 500-540 nm and 570-610 nm ranges for Bodipy-Fl and TAMRA, respectively. *r* values ranged 0.16-0.20 for unbound Bodipy-Fl P-arms. Proteins addition increased *r* only slightly, in the range of 0.20-0.26. *r* values of acceptor-labeled P-arms were 0.18-0.24 and 0.22-0.25 with and without proteins, respectively. While the measured anisotropies suggest somewhat constrained rotational

motion of the dyes, we assumed they were low enough to justify the use of 2/3 for κ^2 , as

this value has been widely accepted for fluorophores with our anisotropies ranges

(Lorenz et al., 1999; Mekler et al., 2002; Rasnik et al., 2004) for review see(Lakowicz,

1999).

Supplemental References

Brannon, J. H., and Magde, D. (1978). Absolute quantum yield determination by thermal blooming. J. Phys. Chem. *82*, 705-709.

Dale, R. E., Eisinger, J., and Blumberg, W. E. (1979). The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys. *26*, 161-194.

Dale, R. E., Eisinger, J., and Blumberg, W. E. (1980). The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys. (erratum) *30*, 365.

Lakowicz, J. R. (1999). Energy transfer, In Principles of Fluorescence Spectroscopy (New York: Kluwer Academic/Plenum Publishers), pp. 367-391.

Lorenz, M., Hillisch, A., Goodman, S. D., and Diekmann, S. (1999). Global structure similarities of intact and nicked DNA complexed with IHF measured in solution by flourescence resonance energy transfer. Nucl. Acids Res. *27*, 4619-4625.

Mekler, V., Kortkhonjia, E., Mukhopadhyay, J., Knight, J., Revyakin, A., Kapanidis, A. N., Niu, W., Ebright, Y. W., Levy, R., and Ebright, R. H. (2002). Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell *108*, 599-614.

Radman-Livaja, M., Biswas, T., Mierke, D., and Landy, A. (2005). Architecture of recombination intermediates visualized by In-gel FRET of λ integrase-Holliday junction-arm-DNA complexes. Proc. Natl. Acad. Sci. USA *102*, 3913-3920.

Rasnik, I., Myong, S., Cheng, W., Lohman, T. M., and Ha, T. (2004). DNA-binding orientation and domain conformation the E. coli rep helicase monomer bound to a partial duplex junction: Single-molecule studies of fluorescently labeled enzymes. J. Mol. Biol. *336*, 395-408.

Wu, P., and Brand, L. (1994). Resonance energy transfer: Methods and applications. Annu. Biochem. *218*, 1-13.

 $*$ X1 and X2 are underlined.

			$J(\lambda)^\# (\text{M}^{-1}$ cm-	
Donor	Φ ^{D.}	Acceptor	$1.nm4$ /10 ¹⁵	$R_0^{\%}(\AA)$
fP2	0.81	fX1	2.20	54.5
fP2	0.81	fX1.5	2.41	55.9
fP2	0.81	fH2A	2.97	57.9
fP2	0.81	fH ₂ B	2.79	57.3
fP2	0.81	fH ₂ C	3.08	58.3
fP2	0.81	fH ₂ D	2.65	56.8
fX1	0.77	fX1.5	2.49	55.6
fX1	0.77	fH ₂ A	3.48	58.9
fX1	0.77	fH ₂ B	2.54	55.9
fX1	0.77	fH ₂ C	2.34	55.2
fX1	0.77	fH ₂ D	2.74	56.7
fF	0.82	fX1	2.20	55.2
fF	0.82	fX1.5	1.69	52.8
$\operatorname{f\!}$	0.82	fH ₂ A	1.95	54.1
$\operatorname{f\!}$	0.82	fH2B	1.63	52.5
$\operatorname{f\!}$	0.82	fH _{2C}	2.40	56.0
$\operatorname{f\!}$	0.82	fH ₂ D	2.66	57.0
fH ₂ A	0.86	fX1.5	2.05	55.0
fH ₂ A	0.86	fH2B	2.28	56.0
fH ₂ A	0.86	fH ₂ C	1.68	53.2
fH ₂ A	0.86	fH ₂ D	1.82	53.9
fH ₂ B	0.74	fX1.5	1.82	52.5
fH ₂ B	0.74	fH ₂ C	2.62	55.8
fH ₂ B	0.74	fH ₂ D	2.28	54.6
fH _{2C}	0.70	fX1.5	1.76	51.8
fH ₂ C	0.70	fH2D	2.13	53.5
fH ₂ D	0.88	fX1.5	2.28	56.2

Table S2. R_0 Measurements

 $*$ Φ ^D is the fluorescence quantum yield of the donor.

$$
{}^*J(\lambda) = \frac{\sum_{\Delta\lambda} [F_{D}(\lambda)\varepsilon_{A}(\lambda)\lambda^4 \Delta \lambda]}{\sum_{\Delta\lambda} [F_{D}(\lambda)\Delta \lambda]}
$$
 Where $F_{D}(\lambda)$ is the fluorescence intensity of the donor and

 $\varepsilon_A(\lambda)$ is the extinction coefficient of the acceptor at wavelength λ .

 ${}^{96}R_0 = 0.211 \sqrt[6]{\kappa^2 n^{-4} \phi^D J(\lambda)}$, R_0 is the Förster distance between donor and acceptor. κ^2 (transition dipoles orientation factor) = $2/3$ and *n* (refractive index of the medium) = 1.4.