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Sensory innervation of the viscera serves a number of
important functions, including regulation of visceral motility
and secretory activity, and transmission of visceral
sensations, including pain. There are many ways in which
the sensitivity of visceral sensory neurones might be
modulated, and these are discussed. Altered sensory
neurone responsiveness may contribute to
pathophysiological states such as irritable bowel
syndrome, and the mechanisms leading to sensory neurone
sensitisation offer novel targets for the treatment of such
disorders.
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SUMMARY
Sensory innervation of the viscera in general and
the gastrointestinal tract in particular serves a
number of important functions, including reg-
ulation of visceral motility and secretory activity,
and transmission of visceral sensations, includ-
ing pain. However, the transduction properties of
visceral afferents are not stable and can be
altered by a large number of factors. The word
plasticity is often used to describe these altered
properties, although it is worth noting that this
term has no formal definition and is taken to
mean different things by different authors. In
the context of visceral sensory neurones, func-
tionally relevant forms of plasticity are those that
affect the encoding and transmission of sensory
information. Increased excitability of sensory
neurones can have dramatic functional conse-
quences, and may contribute to chronic pain
states and conditions of hyper- or dysreflexia.

There are two broad types of sensory neurone
plasticity that need to be distinguished. Firstly,
rapid onset peripheral sensitisation (or desensi-
tisation) of sensory terminals, arising without
altered gene expression, and secondly, a slower
onset phenotypic change in sensory neurone
properties as a consequence of altered gene
expression. This latter form of plasticity can
affect sensory transmission in a variety of ways,
and both forms of plasticity are discussed in
more detail below.

PERIPHERAL SENSITISATION
Tissue injury and inflammation and a great
many algesic chemicals produce changes in the
stimulus-response functions of the primary
sensory neurone terminals in peripheral tissues.
If the stimulus-response function shows a left-
ward shift, the neurone is sensitised and a
greater afferent barrage is generated for a given

stimulus. Less studied, but potentially important,
is the fact that neurones can be desensitised and
show rightward shifts in stimulus-response
functions.

As illustrated in fig 1A, stimuli that trigger
sensitisation may activate G protein coupled
receptors in the nociceptor terminal (for
instance, prostanoids acting at EP receptors,1

adenosine triphosphate (ATP) acting at P2Y
receptors,2 bradykinin at B2 receptors,3 and
some agents acting at chemokine receptors).4

Alternatively, there may be stimuli that activate
ligand gated receptors (such as capsaicin or heat
acting on VR1,5 or ATP acting at P2X receptors).6

Finally, several trophic factors and cytokines
acting at tyrosine kinase receptors may cause
sensitisation (most notably, nerve growth factor
(NGF) acting at tyrosine kinase A (trkA)
receptors).7 8

As shown in fig 1B, these different stimuli
recruit a variety of intracellular signalling cas-
cades, including protein kinase A (PKA) and
protein kinase C (PKC),9–11 or the map kinase
extracellular regulated kinase (ERK)1/2.12 13 The
final effector mechanism underlying sensitisa-
tion of nociceptors is also quite variable and, as
illustrated in fig 1C, can involve modulation
(often by phosphylation) of Na+, K+, or Ca++

channels.14 15 Modulation of these channels can
affect the ease with which the membrane can be
brought to threshold. Clearly this would affect
the responsiveness of the neurone to all forms of
stimulation. Another more specific means of
affecting responsiveness is by modulation via
phosphylation of some receptors such as VR116

and P2X.17 Modulation of VR1 has been particu-
larly well studied and it is clear that its
sensitisation can be so large as to lead to
activation of the receptor at body tempera-
tures.2 18 It is also clear that a great many stimuli
are coupled to VR1 sensitisation. It is worth
noting that to date we have no strong data about
the molecular nature of the mechanical transdu-
cer, although it is clear that sensitisation to
mechanical stimulation can readily occur in
visceral sensory neurones.19 The absence of
information is unfortunate as it is this form of
sensitisation of visceral sensory neurones that is
likely to have the most important functional
consequences.

Peripheral sensitisation of neurones typically
arises within seconds of application of an
adequate stimulus and persists, to a transient
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stimulus, for a matter of minutes. However, in the presence
of ongoing tissue injury or inflammation, sensitisation may
also be prolonged. The sensitising effects of NGF on heat
responsiveness of sensory neurones has been particularly well
studied. On isolated DRG cells in culture and on sensory
neurone terminals studied using a skin-nerve preparation,
NGF acutely sensitises many nociceptive neurones,20

although the mechanism of sensitisation has variously been
ascribed to PKA, PKC, phosphatidylinositol-4,5-biphosphate,
and ERK dependent mechanisms. Small diameter sensory
neurones chronically exposed to elevated NGF levels (in a
NGF over expressing mouse) showed marked heat sensitisa-
tion.21 While the exact mechanism of sensitisation is not
known in this latter case, the data none the less demonstrate
that persistent peripheral sensitisation is possible.

ALTERED GENE EXPRESSION IN NOCICEPTORS
A second form of sensory neurone plasticity involves
regulation of gene expression in those neurones. There is
now a very large body of experimental data suggesting that

such regulation readily occurs as a consequence of tissue
injury, most notably persistent injuries associated with
peripheral tissue inflammation. The plasticity of gene
expression affects many aspects of sensory neurone function,
including: genes coding for neurotransmitters released with
activity from the central terminals of nociceptors; genes
coding for receptors which are transported to both the
peripheral and central terminals of sensory neurones; and
genes coding for ion channels expressed throughout the
neurone and potentially affecting its sensitivity. Genes
regulating structural proteins in nociceptors are also affected
and this may affect some anatomical features of these
neurones.

There are several potentially important signals for this
plasticity of gene expression. The most important (and
certainly the best studied) is NGF. This molecule is
upregulated in many experimental models of inflammation
(including those induced by carrageenan and Freund’s
adjuvant) and in some clinical inflammatory disorders.22–28

NGF is known to be internalised following its binding to
trkA. In addition to its peripherally sensitising effects
discussed above, it is known to be transported retrogradely
from peripheral terminals to cell bodies. Evidence from
several sources suggests that NGF itself cannot initiate
signalling in the cell soma, but that the NGF/trkA complex
maintains autophosphorylation and activates transcription
factors such as cyclic AMP response element binding protein
and Oct-2 (a member of the POU family of transcription
factors) that control gene expression.29 30 The importance of
NGF is supported firstly, by its ability (when administered
exogenously) to induce changes in gene expression and
secondly, from the many studies which have shown that
nociceptor plasticity to inflammation is greatly reduced with
strategies that block NGF actions.31 While the data for NGF
are particularly extensive, it is also clear that other
neurotrophic factors such as glial cell line derived neuro-
trophic factor can regulate gene expression in some primary
sensory neurones.32

CONCLUSIONS
In summary, there are many ways in which the sensitivity of
visceral sensory neurones might be modulated. Some of these
are rapid and are triggered by many of the stimuli that
normally impinge on the sensory neurones. Other forms of
modulation have a slower onset and are more persistent.
These frequently involve altered gene expression in the
sensory neurones, triggered by altered availability of neuro-
trophic factors. Altered sensory neurone responsiveness may
contribute to pathophysiological states such as irritable bowel
syndrome, and the mechanisms leading to sensory neurone
sensitisation offer novel targets for the treatment of such
disorders.
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Figure 1 Modulation of primary sensory neurone sensitivity. (A) A list
(on the left) of many of the stimuli which can lead to sensory neurone
sensitisation. (B) Illustration of the second messenger cascades by which
sensitising stimuli induce their local effects. (C) Illustration of the main
effector mechanisms by which altered sensory neurone responsiveness is
achieved.
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