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We developed and characterized a coculture sys-
tem composed of a fat-storing ceU clone (CFSC-
2G) andfreshly isolated hepatocytes that can re-
produce in vitro some of the pbysical and
functional relationships observed in vivo Hepa-
tocytes in the coculture arepolarized, are smaUer
in size than hepatocytes plated on plastic, main-
tain a cuboidal shape, and have a tendency to
form cords. Fat-storing ceUs, which are initialy
extended, retract and leave spaces that resemble
liver sinusoids. Both ceU types in the coculture
system are functionalfor at least two weeks as
determined by the expression of high levels of
liver-specflcprotein mRNAs as weUas by thepro-
duction and secretion of liver-specific proteins
into the culture mediunL The hepatocytes main-
tain relatively high levels of asialoglycoprotein
receptor on their cell surface andformfunctional
gap junctional complexes with fat-storing ceUs.
Hence, this coculture system retains a number of
differentiatedfunctions ofhepatocytes, making it
a usefulmodelto study ceUl-cel interactions in cul-
ture and to analyze regulation ofhepatocytefunc-
tions. (AmJPathol 1995, 146.1508-1520)

When hepatocytes are plated on a tissue culture plas-
tic surface, they lose the capacity to express various
liver-specific genes.1-3 For example, transcription of
the albumin gene is significantly reduced3 and ex-

pression of the hepatocyte plasma membrane asia-
loglycoprotein receptor is lost within 48 hours (Rich-
ard Stockert, personal communication). In contrast to
these findings, when hepatocytes are plated on plas-
tic coated with complex extracellular matrices such
as biomatrix4 or matrigel,3,5'6 they retain these differ-
entiated functions for several weeks in culture. When
specific extracellular matrix components, such as
heparans, are added to hepatocytes cultured on
plastic, these cells partially regain their capacity to
transcribe some liver-specific genes.7

Alternative procedures have been developed to
maintain liver-specific gene expression of hepato-
cytes in culture. These consist of preparing cocul-
tures with other liver epithelial cells, possibly derived
from the canal of Hering,8'9 or to use irradiated fibro-
blasts as feeder layers on which the hepatocytes are
plated.10 Cocultures with endothelial cells1 1 or forma-
tion of hepatocyte spheroids have also been
used. 12'13 Although liver-specific functions are par-
tially restored by these experimental procedures, they
neither resemble the normal cellular organization nor
contain cell-matrix interactions observed in intact tis-
sue. Preliminary data from our laboratory suggested
that hepatocytes maintained in coculture with the fat-
storing cell (FSC) clone CFSC-2G14 retained some
liver-specific functions for at least 2 weeks.15'16 More
recently, cocultures of hepatocytes and FSC were
used to study changes in the expression of extracel-
lular matrix components17 and the role of hepatocyte
injury in collagen production by FSC.18 However, nei-
ther the survival of hepatocytes nor the expression of
liver-specific proteins was investigated.
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Hepatocytes in vivo are in close contact with pro-

jections emitted by FSCs as well as with extracellular
matrix components present in the space of Disse.19
These extracellular matrix components are produced
in part by FSCs,20.21 sinusoidal endothelial cells,22'23
and hepatocytes18,21,24-27 with their composition
varying upon the interactions established by the vari-
ous cell classes.28 The extracellular matrix compo-
nents play an important role in providing attachment
sites for the hepatocytes and other sinusoidal cells. In
addition, they are important in sustaining their func-
tion. Cell-matrix interactions are established via spe-
cific cell surface receptors.28 Hepatocyte receptors
for fibronectin and laminin have been particularly well
characterized, including determination of specific
amino acid sequences recognized by these recep-

tors for their extracellular matrix substrates.28
We have developed a coculture system with hepa-

tocytes and FSCs that reproduces in vitro some of the
physical and functional relationships observed in
vivo. Because of the intrinsic problems of isolating
simultaneously FSCs and hepatocytes, cocultures of
freshly isolated hepatocytes were established with a

FSC cell line developed29 and cloned in our labora-
tory. 14 The FSC clone used (CFSC-2G) resembles the
phenotype of freshly isolated FSCs with respect to the
expression of various transcripts coding for extracel-
lular matrix components.14 In this communication we
describe the characteristics of the coculture and
demonstrate that hepatocytes and FSCs in coculture
establish functional gap junctions between them-
selves and each other and retain a number of func-
tions associated with well differentiated hepatocytes.

Materials and Methods

Establishment of Cocultures

Frozen stocks of FSC clones CFSC-2G, CFSC-8B,
CFSC-3H, and CFSC-5H14 were thawed and main-
tained in culture with minimal essential medium
(GIBCO BRL, Gaithersburg, MD) containing nones-

sential amino acids (Gibco) and 10% fetal bovine se-

rum (HyClone, Logan UT). Confluent dishes were

trypsinized as previously described,14 and approxi-
mately 1.0 x 106 CFSC-2G were plated in 75-cm2
Falcon culture flasks (Becton Dickinson, Lincoln Park,
NJ) and maintained in culture for 48 hours. Cells in
one culture dish were trypsinized and counted to es-

tablish the approximate number of viable FSCs. In
several experiments we found that the number of cells
was 1.5 x 106 to 2 x 106. In preliminary experiments
we determined that the best ratio of hepatocytes to
FSCs needed for the hepatocytes to maintain their

function was between 3:1 and 5:1. Therefore, we
plated on top of the CFSC-2G, 10 x 106 freshly iso-
lated hepatocytes30 with minimal essential medium
supplemented with 5 mg/L insulin (Sigma Chemical
Co., St. Louis, MO) and 5% fetal bovine serum. Two
hours after plating, culture medium was removed and
replaced by a serum-free, hormonally defined culture
medium (HDM).31 The cells were maintained in cul-
ture for 2 weeks. HDM was replaced every other day.
Cells were harvested at various times after plating the
hepatocytes and used for the experiments described
below. Initially, cocultures were prepared with freshly
isolated hepatocytes and the various FSC clones de-
veloped in our laboratory.14 The culture media ob-
tained after 2 weeks in culture were tested by Western
blot for the presence of albumin, with an antibody to
rat albumin that did not cross-react with bovine serum
albumin (kindly provided by Drs. J. and N. Roy-
Chowdhury, Albert Einstein College of Medicine). As
results suggested that secretion of albumin was
greater when hepatocytes were plated on CFSC-2G
(See Table 1), all additional cocultures were prepared
with this FSC clone.

Sodium Dodecyl Sulfate Polyacrylamide
Gel Electrophoresis (SDS-PAGE) and
Western Blots

Cell cultures were scraped from dishes into cold
phosphate-buffered saline (PBS) containing 2 mM
phenylmethylsulfonylflouride (Sigma Chemical Co.)
freshly added from a 100 mM stock in isopropanol,
washed, resuspended in a minimum volume of this
buffer and lysed by brief sonication. A total of 75 pg
of cellular protein (Bradford assay, Sigma Chemical
Co.) was resolved by SDS-PAGE (10% gels) and
transferred to nitrocellulose as described.32 Blots
were probed with a rabbit anti-Cx43 antibody33 or an
anti-asialoglycoprotein receptor antibody.34 Subse-
quent to washes, blots were incubated with 1251_
labeled protein A (New England Nuclear, Boston, MA)
and washed. Antibody binding was visualized by au-
toradiography.

Dye Transfer Analysis

Dye transfer between hepatocytes and FSCs was
analyzed by microinjecting 5% Lucifer yellow CH
(Sigma Chemical Co.) in 150 mmol/L LiCI into single
cells through microelectrodes. The spread of dye was
directly observed and photographed within 1 minute
of injection.
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Light, Confocal Laser Scanning, and
Electron Microscopic Studies

FSCs were plated on sterile No. 2 coverslips placed
in sterile 100-cm bacteriological dishes (Falcon).
After 48 hours in culture, when cells were subconflu-
ent, 1 x 106 hepatocytes were added to the bacte-
riological dishes. Two hours after plating, culture me-
dium was removed by aspiration, the cells were
washed twice with PBS and the medium replaced by
HDM as described above. Cells were maintained in
culture for 24 to 48 hours after which time they were
processed as follows. Cocultures were fixed in cold
4% paraformaldehyde-2.5% glutaraldehyde for 10
minutes. Cells were stained with methyl green pyro-
nine (Sigma Chemical Co.) to determine the overall
morphology and presence of mitosis.35 They were ex-
amined for ATPase activity to detect bile canal-
iculi36,37 and for catalase activity to determine the
presence of peroxisomes.38 Cocultures were rinsed
for 1 minute with MEPS buffer (2 mmol/L Mg2+SO4, 5
mmol/L EGTA, 35 mmol/L K plus piperazine-N,N'-bis-
(2-ethane sulfonic acid), and 0.2 mol/L sucrose,
pH 7.0) that contained 0.5% Triton X-100. Cells were
fixed for 5 minutes at 37 C with 0.25% glutaraldehyde
in MEPS buffer containing 0.5% Triton X-100 and
used for the immunocytochemical localization of
f-tubulin to detect microtubule distribution; this was
performed by sequential exposure of cocultures to
mouse monoclonal antibody to 13-tubulin (Sigma
Chemical Co.) and to goat anti-mouse immunoglobu-
lin G-fluorescein isothiocyanate (Sigma Chemical
Co.). For ultrastructural studies, cocultures were post-
fixed in 1% osmium tetroxide and processed as pre-
viously described.39 For confocal microscopy studies
of cocultures, optical sections were scanned at 1 -p
intervals over a depth of 31 p with a Bio-Rad MRC 600
laser confocal microscope fitted with a Nikon 60X
objective (numerical aperture 1.40). Volumetric re-
constructions of cocultures were performed with the
Voxel View program running on a Silicon graphics
workstation.

Effect of Interleukin- (IL)-6 on Albumin,
Collagen, and Fibrinogen mRNA
Expression by Cocultures

Cocultures maintained for at least 10 days were
washed twice with PBS after aspirating the culture
medium. Fresh HDM containing 20 ng/ml recombi-
nant IL-6 (kindly provided by Dr. T. Hirano, Osaka,
Japan) was added, and the cells were harvested 6
hours later as described above. Total RNA was ex-
tracted as described below.

Northern Blot Analysis

Total RNA was extracted from the harvested cells as
described by Chomczynski and Sacchi40 with slight
modifications.14 Approximately 10 pg of RNA were
electrophoresed on 1% agarose gels and transferred
to a GeneScreen filter sheet (New England Nuclear),
as described by the manufacturer. The following 32p
labeled probes were used for hybridization: The rat
cDNA probe for fibronectin (500-bp EcoRl fragment)
was provided by Dr. R. Hynes,41 rat cDNA for al(I)
procollagen (1.6-kb Psd fragment) was provided by
Dr. D. Rowe,42 rat albumin cDNA (700-bp Psf frag-
ment) provided by Dr. D. Shafritz,43 and the rat fi-
brinogen probe (1.2-kb Pst fragment) was provided
by Dr. G. R. Crabtree.44 The probes were radiolabeled
by primer extension, with [32P]dCTP with a specific
activity of 3000 Ci/mmol (Amersham Corp., Arlington
Heights, IL). The specific activity of the labeled
probes ranged from 2 x 107 to 6 x 107 cpm/pg DNA.
Hybridizations and washings of the blots were per-
formed under stringent conditions as previously de-
scribed.14,29 All filters were exposed to Kodak
X-Omat film at -70 C with intensifying screens.

Incorporation of [35S]Methionine into
Immunoprecipitable Albumin,
Ceruloplasmin, and Fibrinogen

Cocultures sustained for 2 weeks were incubated with
a methionine-free culture medium that contained 5
pCi/ml [35S]methionine (Amersham Corp.) for 24
hours. The culture medium was harvested, and 1-ml
aliquots were incubated overnight with protein
G-agarose beads (GammaBind G, Genex Corp.,
Gaithersburg, MD) that had been previously incu-
bated with one of the following polyclonal antibodies:
anti-albumin (kindly provided by Drs. J. and N. Roy-
Chowdhury, Albert Einstein College of Medicine),
anti-fibrinogen (Accurate Chemical and Scientific
Corp., Westbury, NY), or anti-ceruloplasmin, kindly
provided by Dr. Michael Schilsky (Albert Einstein Col-
lege of Medicine). Agarose beads were collected by
centrifugation for 5 seconds at 16,000 rpm in a mi-
crocentrifuge. They were washed several times with
PBS, once with Tris-buffered saline, and once more
with PBS. After adding 100 p1 of Laemmli buffer45 to
the agarose beads and boiling the samples for 2 min-
utes at 100 C, 50-pl aliquots were electrophoresed on
10% SDS-PAGE gels. Gels were incubated with En-
hance (NEN Research Products, Boston, MA) and
dried. The presence of the immunoprecipitated pro-
teins was established by fluorography with Kodak
X-Omatic film.
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Results
The morphology of hepatocytes in coculture is well
preserved. Although variable in size (range of 20 to 31
p measured at the cell center), on the average, these
cells are smaller in size than those plated on plastic
or on collagen-coated dishes.3 They are character-
istically cuboidal and form cords composed of two or
three rows of cells. Figure 1, a-c shows the overall
morphological appearance of the FSC-hepatocyte
cocultures. Linear groups of hepatocytes are evident
with FSCs in close proximity to one surface of the
hepatocytes, and mitotic figures in both hepatocytes
and FSCs are commonly found (Figure 1 a). Figure 1 b
shows the localization of ATPase to the apical surface
of contiguous hepatocytes. ATPase activity is en-
riched at the bile canaliculus pole in hepatocytes from
rat liver; its presence indicates that bile canaliculi
have formed between contiguous cells37 and sug-
gests that hepatocytes in the cocultures are polar-
ized. Figure lc shows the localization of catalase
in peroxisomes, a hepatocyte-specific organelle.38
ATPase activity or catalase-positive peroxisomes are
not observed in FSCs. Figure 2, a and b, show the
distribution of tubulin in microtubules in FSCs and in

hepatocytes the microtubules appear as elongated
tubules in both cell types; they are distributed
throughout the cytoplasm and are concentrated in the
centrosomal region close to the nucleus of FSCs and
hepatocytes (Figure 2b) and near the bile canaliculus
in hepatocytes.

Confocal microscopy also reveals important topo-
graphic relations between FSC-hepatocyte cocul-
tures. In Figure 2a only a small area of the hepatocyte
surface is contacted by the FSC. Furthermore, FSCs
send out long projections and make contact with
hepatocytes that are some distance away. In Figures
3, a-d, y axis views reveal that the contact region is
over the centriole/nuclear region; in this region, mi-
crotubules are seen radiating from the centriole to the
region beneath the site where the FSC extension
touches the hepatocyte surface. Actin distribution in
hepatocytes is found at the periphery of the cells and
is concentrated near the bile canaliculi; in the FSC,
actin is distributed at the cell periphery (not illus-
trated). Ultrastructural studies (Figure 4A) reveal typi-
cal hepatocyte and FSC subcellular structures and
corroborates the establishment of hepatocyte polar-
ity. Microvilli are seen at the hepatocyte basal plasma
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Figure 1. Cytocbe;nistrj' of coctiltiures. a: lethbl greeni pvronmine staininlg. Several bepato)cytes and FSCs are seen in mitosis (arrous). b: ATPase lo-
calization. ATPase activity is distrilbutcd between cotntiguiouis bepatocs'tes in bile canalicuili (arrous). c: Catalase localizationn. (atalase acti2ity' is
found ini hepatocyte cytoplasmic spherical stnrctueres ( black dots) that correspond to peroxisomnes. Bar, 50 1.
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Figure 2. Confocal microscope images ofcocultures sbowing the localization oftubulin in cytoplasmic microtubules. a: Projection of31 serial op-
tical sections of the entire depth ofFSCs (range of 12 to 18 t4 measured at cell center) and of hepatocytes (range of20 to 31 4 measured at cell
center). The spatial relations ofFSCs (I) and hepatocytes (H) are evident. Note the long tubulin-positive projections ofFSCs (range of8 to 14 ,u in
depth and 5 to 9 ,u in length) extending to the hepatocyte and contacting a small region ofthe hepatocyte surface (arrows). b: A 1-,u optical section
within the above projection of sections showing tubulin in a centriole (arrow) of a FSC (1) (same cell as upper left in a) and a hepatocyte (H)
(same cell as upper right in a). In the hepatocyte and FSC, elongated microtubules extendfrom the centriole to the cell surface; in the FSC, micro-
tubules are also seen within its projections. Bar, 10 ,u.
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Figure 3. Confocal microscope images ofcocultures immunostainedfor tubulin. a: Volume ofFSCs and hepatocytes rendered uwth Voxel View. b to
d: y axis tews examined at three different points in the area of contact between a FSC extension and a hepatocyte. Cytoplasmic microtubules ap-
pear white; note the presence of microtubules beneath the area of contact (arrow). In (d), the area of contact is above a centriole region (C). Mi-
crotubules appear to extendfrom the centriole to the surface beneath the contact area. Bar, 10 4.
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Figure 4. A: Ultrastructural appearance ofFSC and hepatocyte cocultures incubatedfor catalase activity wbtb a diaminobenzidine, pH 9.7, cyto-
chemical method. Hepatocyte nuclei are indicated by N and FSC nuclei by I. Hepatocytes are attached to each other and, between contiguous
hepatocytes, a bile canaliculus (C) is evident. Note the presence ofa midbody (arrow) connecting two separating hepatocytes at the end of mitosis.
Microvilli (L) are seen at the basal surfaces ofhepatocytes and at the bile canaliculus. Microtubules (7) are evident in both cell types. Also labeled
are peroxisomes (P) in hepatocytes and mitochondria (Al) in FSCs. Bar, 2.5 y. B: Microvilli are evident on bile canaliculi between contiguous
hepatocytes. Note the similarity of their ultrastructure to that of adjacent hepatocytes in intact liver. Arrowheads indicate the presence of desmo-
somes andjunctional complexes on the opposing lateral membranes. Also labeled is the nucleus (N). Magnification, X 10,000.

membrane surface and microvilli at the apical plasma
membrane between contiguous hepatocytes form
bile canaliculi bounded by tight junctions (Figure 4B).

Cocultures express a number of hepatocyte-
specific functions as determined by the expression of
asialoglycoprotein receptor protein (Figure 5), high
levels of mRNAs coding for albumin and fibrinogen
(Figure 6), and by the synthesis and secretion of al-
bumin, ceruloplasmin, and fibrinogen (Figure 7). As
illustrated in Figure 5, levels of asialoglycoprotein re-
ceptor in cocultures maintained for 10 days is ap-
proximately 30% of that of freshly isolated hepato-
cytes. Hence, in these cocultures in which FSCs
contribute a significant amount of protein but do not
express receptors, the amount of asialoglycoprotein
receptor present in the plasma membrane of the
hepatocytes is likely to be even higher than esti-
mated. In contrast to these results, hepatocytes cul-
tured on plastic for 4 days contain no detectable asia-
loglycoprotein receptor protein (not shown).

Figure 6 demonstrates that, after an initial decrease
in mRNAs coding for albumin and fibrinogen, steady-
state levels of these mRNAs increase and remain el-
evated over the 2-week period of the experiments.

The initial drop in mRNA expression is associated, in
part, with a decrease in the total number of hepato-
cytes plated, mainly as a result of detachment and
death of hepatocytes that piled up on top of other
hepatocytes.

It has been established that increased expression
of fibrinogen mRNA is transcriptionally regulated by
IL-6.4647 As shown in Figure 8, hepatocytes in co-
culture respond to IL-6 with increased expression of
fibrinogen mRNA. As this gene is transcriptionally
regulated, the results would suggest that hepatocytes
in coculture are transcribing genes. Cocultures also
express high levels of al (1) procollagen and fibronec-
tin mRNAs. The addition of IL-6 to cocultures induced
the expression of al (1) procollagen mRNA (Figure 9).
As FSCs and not hepatocytes respond to recombi-
nant IL-6 with increased expression of al(l) procol-
lagen mRNA,14,48 these results suggest that FSCs are
also functional. IL-6 also induced the expression of
fibronectin mRNA (Figure 8). However, the actual cel-
lular source of al (1) procollagen and fibronectin tran-
scripts in the coculture remains to be determined as
both cell types used for the coculture are known to
express both mRNAs.227,49-51
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Figure 5. Western blot analysis ofproteins extractedfrom cocultures,
electrophoresed on 10% SDS-PAGE and transferred to nitrocellulose32
(see Materials and Methods). The blot was probed with a rabbit anti-
asialoglycoprotein receptor antibody.34 Bound antibody was visual-
ized after incubation uwth 125I-labeled protein A and autoradiogra-
phy. Lane A corresponds to 20 yg ofprotein extracted from freshly
isolated hepatocytes. Lanes B (20 jg ofprotein) and C (40 yg ofpro-
tein) represent samples obtained from cocultures maintained for 10
days. The horizontal lines represent the position of the various mo-

lecular weight markers.

mRNA levels may not always reflect the capacity of
cells to produce and secrete proteins. Therefore, it
was important to determine whether the hepatocytes
retained the capacity to synthesize and secrete liver-
specific proteins. [35S]Methionine labeling experi-
ments demonstrate that cocultured hepatocytes pro-
duce and secrete a number of plasma proteins (see
Figure 7). Experiments performed in duplicate
showed that 2-week cocultures incorporated 3.0 x

106 and 2.8 x 106 cpm of the label into trichloroacetic
acid-precipitable protein; of this, 5.48 x 104 and 4.98
X 104 cpm were incorporated into secreted proteins
and 2.5 x 106 and 2.3 x 106 cpm were incorporated
into cellular proteins. Of the total radioactivity in the
culture medium, approximately 8.4% was recovered
in albumin, 3.7% in fibrinogen, and 1.8% in cerulo-
plasmin immunoprecipitates.
FSCs express the gap junction protein connexin

(Cx)43 and form functional gap junctions in culture.14
Among the types of interactions possible between
FSCs and hepatocytes in vivo and in vitro is gap

Figure 6. Northern blot analysis of total RNA extracted from cocul-
tures of hepatocytes and FSCs at 24 (A), 48 (B), 72 (C), and 96 (D)
hours and at 7 (E) and 14 (F) days afterplating the hepatocytes on

the FSCs (see Materials and Methods). The same blot was sequentially
probed with cDNAs forfibronectin (1 ), a1(0) procollagen (2), albu-
min (3), andfibrinogen (4). Blots were exposedfor various time pe-
riods that variedfrom 15 minutes for albumin to 24 bours for a1(f)
procollagen.

junction-mediated direct intracellular communica-
tion. As shown in Figure 10, injection of Lucifer yellow
into hepatocytes resulted in transfer of the dye within
1 minute to other hepatocytes and FSCs. We had ear-

lier shown that FSCs express and phosphorylate the
gap junction protein Cx43 and form functional gap

junctions in culture.14 Interestingly, in experiments
designed to determine which of the FSC clones de-
veloped in our laboratory14 was most capable of sus-

taining hepatocyte function, we found a direct corre-

lation between this capacity and expression of Cx43
(Table 1).

Discussion
The cocultures described in this communication have
cellular structures and interactions similar to those in
hepatocytes and FSCs in vivo. In the coculture sys-

tem, the hepatocytes establish polarity with charac-
teristic apical and basolateral surfaces, including for-
mation of bile canaliculi and tight junctions. The FSCs
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Figure 7. Fluorography of P35S]-methionine-labeled albumin (A),
ceruloplasmin (B), and fibninogen (C) produced and secreted by
cocultures of hepatocytes and FSCs sustained for 2 weeks with a

serum-free HDM. These exeriments were performed in duplicate,
and each pair of lines correspond to one protein. Cocultures uere in-
cubated for 24 hours with /35S]methionine, and aliquots of the cul-
ture medium were immunoadsorbed to protein G-agarose beads that
had been precoated with a polyclonal antibody to the respective pro-
tein. The arrows indicate the position of ceruloplasmin, albumin,
andfibninogen.

establish long extensive projections, some of which
contact the basal surfaces of hepatocytes. The site of
contact between hepatocytes and FSCs occurs in a

restricted area of the hepatocyte surface that appears
to be over the centrosome/nuclear region of the
hepatocyte. In this region, concentrations of micro-
tubules are found that radiate out to the basal and
apical surfaces of the hepatocyte. Although the sig-
nificance of the interaction between FSCs and hepa-
tocytes in this region is unknown, it may play an im-
portant role in cell-to-cell signaling and in sustaining
the functional capacity of both cell types. We may
speculate that functional gap junctions between
FSCs and hepatocytes, described in this paper, may
also occur in the centrosome/nuclear region and
could play a role in establishing direct communication
between the two cell types. The functional role of this
region has been demonstrated in short-term cultures
of rat hepatocytes grown on collagen in the absence
of FSCs; we have found that the centrosome-
associated microtubules play a role in receptor-
mediated endocytosis of asialoglycoproteins (No-
vikoff et al., manuscript in preparation).

Hepatocytes cocultured with CFSC-2G cells have
maintained a number of diverse differentiated
functions. They synthesize and secrete liver-specific
proteins (see Figures 5 to 7) and they respond to IL-6
with increased expression of fibrinogen mRNA.
As previously shown,46 fibrinogen is transcrip-

2

Figure 8. Northern blot analysis of total RNA extracted from cocul-
tures ofhepatocytes and FSCs maintainedfor 10 days in culture with
a serum-free HDM (A). Sample (B) was obtained from cocultures
maintained as described in (A), except that 20 ng/ml recombinant
IL-6 were added 6 hours before harvesting the cells and extracting
RNA. The same blot was sequentially probed with a fibrinogen (1 )
and an albumin (2) cDNA, respectively. Note the induction of fi-
brinogen, whereas albumin shows little change after the cells were e.x-

posed to recombinant IL-6.

tionally activated by IL-6, thus suggesting that hepa-
tocytes in coculture retain the capacity to transcribe
genes.

Although CFSC-2G cells have a doubling time of
approximately 24 to 36 hours when cultured with 10%
FBS,14 they do not proliferate when cultured with the
serum-free HDM developed by Reid and Jefferson.31
However, when placed in coculture with hepatocytes,
CFSC-2G cells proliferate (see Figure 1 a). These find-
ings indicate that hepatocytes are producing a

growth factor that induces the proliferation of FSCs.
Indeed, the presence of such a factor in hepatocyte-
conditioned medium has been recently suggested.52
The hepatocytes also modify the capacity of

C A B
-44
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Figure 9. Northern blot analysis of total RNA extracted from cocul-
tures of hepatocytes and FSCs as described in Figure 8. Cocultures
were incubated with either 10 (B), 20 (C), or 40 (D) ng/ml recombi-
nant IL-6. RNA from untreated controls is shown in (A). Blots were

sequentially probed with a fibronectin (1), an al(t) procollagen (2),
or an albumin (3) cDNA probe. Note that 1L-6 induced the expression
of al(I) procollagen and fibronectin mRNAs in a dose-dependent
manner. However, 40 ng/ml IL-6 was already inhibitory. As also
shown, IL-6 had no effect on the expression of albumin mRNA.

CFSC-2G cells to express al(I) procollagen mRNA.
As previously shown by Greenwel et al,14 CFSC-2G
cells express very low levels of cil(l) procollagen
mRNA under basal conditions. However, basal
expression of al(I) procollagen in cocultures is dras-
tically increased. Although we have not yet deter-
mined the expression of cytokines and growth factors
by cocultures, it is possible that hepatocytes produce
and secrete transforming growth factor-a, one of the
growth factors produced during liver cell regenera-
tion.5354 This cytokine is known to induce hepato-
cyte53 and FSC proliferation21 and also induces the
expression of al(I) procollagen by cultured FSCs.21
In addition, we have shown that transforming growth
factor-a induces a change in morphology in FSCs,
similar to that observed in cocultures.55
An unexpected finding was that the ability of FSC

lines to assist in maintaining differentiated hepatocyte
function in cocultures correlated with their level of ex-
pression of the gap junction protein Cx43. Further-

Figure 10. Dye coupling between cocultured FSCs and bepatocytes.
A: Phase contrastpbotograph of cocultured hepatocytes (H) and FSC
(1). B: Fluorescent pbotograph of the same field as pictured in (A).
Lucifer yellow (5%) was microinjected into a hepatocyte (star) and
within 1 minute had spread to other hepatocytes and to cells in the
FSC layer. Hepatocytes and FSCs were easily distinguished by their
characteristic morphology.

more, we found fluorescent dye transfer, mediated by
gap junctions, between hepatocytes and FSCs in
cocultures. Although close contacts between the two
cell types is known to occur in vivo,56,57 the presence

of gap junctions has not been reported. In this con-

text, it is notable that FSCs express Cx4314 whereas
hepatocytes express Cx32 and Cx26.58 1 Our three-
dimensional studies have demonstrated that the con-

tact site between FSCs and hepatocytes occupies an
area equal to the width of the tip of a FSC projection
and is, indeed, a very small area of the hepatocyte
surface. The chances of finding such a contact by
two-dimensional analysis (eg, conventional light and
electron microscopy) are extremely low and would
explain why contact sites have not been seen previ-
ously. Studies are in progress to perform three-
dimensional reconstructions and volume rendition of
cocultures in which tubulin and connexins 43, 32, and
26 are immunolocalized. These studies should permit
a detailed analysis of the contact site and the possible
interrelations between centrosome-associated mi-
crotubules and gap junctions.

A B C 0D A
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Table 1. Correlation between the Expression of Cx43 by FSC Clones and Their Capacity to Sustain Hepatocyte Survival and
Expression of Liver-Specific Proteins by Hepatocytes in Coculture

FSC clone CFSC-2G CFSC-8B CFSC CFSC-3H CFSC-5H

Cx43 content 22.8 11.9 5.5 3.0 1
Collagen type + + +++ ++++ +++++
Collagen type IlIl + + + +++ +++
Fibronectin ++++ +++++ +++ ++++ ++++
Laminin ++ ++ ++ +++ +++
Coculture (survival) ++++ ND ++ + +
Coculture (albumin mRNA synthesis) 4.8 ND 2.4 ND 1.0

The relative expression of Cx43 was derived from the relative density of autoradiographic bands from Western blot analysis of monolayers
of FSCs. Approximately 75 pg of cellular protein were electrophoresed on 7.5% SDS-PAGE and transferred to nitrocellulose paper as de-
scribed by Yamamoto et al.32 Blots were probed with an anti-Cx43 antibody.33 The relative levels of mRNA for extracellular components pro-
duced by monolayers of FSC clones are indicated by pluses. Likewise, the ability of different FSC clone lines to promote survival of hepato-
cytes in coculture is indicated by pluses. The stimulation of hepatocyte albumin synthesis was quantified by relative density of
autoradiographic bands from Northern blot analysis. ND, not determined.

In summary, the coculture system described in this
communication has unique features that make it a
useful model in which the functional interdependence
of hepatocytes and FSCs can be studied. Although
we have investigated only the effect of FSCs on the
functional capacity of the hepatocytes, it is also pos-
sible to explore how the hepatocytes modify the be-
havior of FSCs. As FSCs are the main producers of
extracellular matrix components in normal and cir-
rhotic livers,2021 it is possible to use the coculture
system to explore how ethanol, CC14, or other toxins
that induce hepatocyte injury may affect collagen
gene expression by FSCs. Indeed, preliminary results
from our laboratory have indicated that the coculture
system appears to be a useful model to study liver
fibrosis in vitro.62 Finally, the unexpected demonstra-
tion of functional gap junctions between hepatocytes
and FSCs suggests that such communication may
exist in vivo and may have a role in the development
and/or maintenance of hepatocyte function.
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