
Supporting Appendix

Fixed Point Analysis

In this section, we study the fixed point properties of a feedback
loop composed of an arbitrary number,N , of nodes whose dy-
namics is given by Eq. (1) in the main text, which we repeat here

dxi

dt
= g

(A,R)
i (xi, xi−1) i = 1 . . .N. [1]

Our analysis proceeds by noting that, using the monotonic-
ity condition, we can write explicit functional relations between
neighboring variables in the steady state (whendxi/dt = 0)

g
(A,R)
i (x∗

i , x
∗

i−1) = 0 ⇒ x∗

i = f
(A,R)
i (x∗

i−1) [2]

Notice that the functionsfi have the same monotonicity proper-
ties as thegis with respect to the second argument (for this it is
necessary thatgi(x, y) be a monotonicallydecreasing function of
x). By iterative substitution, we obtain

x∗

i = fi(x
∗

i−1) = fi(fi−1(x
∗

i−2)) = . . . =

= fi ◦ fi−1 ◦ fi−2 ◦ . . . ◦ fi+1(x
∗

i ) ≡ Fi(x
∗

i ) [3]

where◦ denotes convolution of functions. Here, we introduced
the functionFi(x), which quantifies how the speciesi interacts
with itself by transmitting signals along the loop. Notice also
that if Eq.(3) holds for one value ofi, then it holds for anyi,
since it is sufficient to applyfi+1() on both sides to obtain the
equation forx∗

i+1 and so on. For feedback loops, much useful in-
formation can be obtained from the properties ofFi(x). Firstly,
by applying the chain rule, we obtain the slope ofFi(x) at x:
F ′

i (x) =
∏

j f ′

j(xj)|xi=x. The r.h.s is always greater (less) than
zero if the number of repressors present in the loop is even (odd).
In the former case, there can be multiple fixed points, i.e., this is
a necessary condition for multistability. On the other hand, when
there are an odd number of repressors, thenFi(x) is positive and
monotonically decreasing, meaning that there is one and only one
solution to the fixed point equationx∗

i = Fi(x
∗

i ). The system Eq.
1 has one unique fixed point, which we denotex

∗. To perform
the stability analysis, we write the characteristic polynomial eval-
uated at this point

∏

i

[λ − ∂xgi(x, y)|x=x∗ ] =
∏

i

∂ygi(x, y)|x=x∗ . [4]

The above equation can be greatly simplified using the relation
F ′(x) =

∏

i ∂ygi(x, y)/∂xgi(x, y), which is a consequence of
the implicit function theorem and the chain rule. One then obtains
the following equation

N
∏

i=1

(

λ

hi

+ 1

)

= F ′(x∗) [5]

where thehi = −∂xgi(xi, xi=1)|x∗ are the degradation rates at
the fixed point. Notice that, sinceF ′(x) is always negative in a
negative feedback loop, all coefficients of the characteristic poly-
nomial are non-negative, hence it can not have real positiveroots.

This means that the destabilization of the fixed point can only
occur via a Hopf bifurcation, i.e. with two complex conjugate
eigenvalues crossing into the positive real half-plane.

In the simple case in which all the degradation rates are equal
and unchanging (i.e,hi = γ, a constant) the roots of the polyno-
mial (5) in the complex plane are the vertices of a polygon cen-
tered on−γ with a radius|F ′| as sketched in Fig. 5. Therefore,
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Fig. 5: Sketch of the Hopf bifurcation in the eigenvalue complex
plane, in the case in which all the degradation rates are equal to a
constantγ.

the fixed point will remain stable as long as

|F ′(x∗)| cos(π/N) < γ. [6]

In this case, Hopf’s theorem (see e.g. [1]) ensures the existence
of a periodic orbit close to the transition value, whose period is

T = 2π/Im(λ) [7]

which, in the simple case of equal degradation timescales, be-
comesT = 2π/[|F ′(x∗)| · sin(π/N)]. Notice that the Hopf the-
orem does not ensure that the orbit is stable; however, sincethe
system is bounded and there are no other fixed points, we expect
the orbit to be attracting, at least close to the transition point.

Now we apply these ideas to the 3-repressor example discussed
in the main text:

dxi

dt
= c − γxi + α

1

1 + (xi−1/Ki)h
i = 1 . . . 3. [8]

The coordinates of the fixed point are all equal due to symmetry.
We denote byx∗ the solution to the equationγx = c + α/(1 +
(x/K)h). Then the characteristic polynomial is simply

(λ + γ)3 = −

(

α

1 + (x∗/Ki)h

)3

[9]

Notice, that this can be written as

(

λ

γ
+ 1

)3

= F ′(x∗) [10]
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Fig. 6: A simple genetic oscillator described by Eq.8. (a) Plot of
F1(x) for h = 2 (black solid curve) andh = 4 (red curve). Other
parameters are kept fixed:α = 3.0, c = 0.1, K = 1, γ = 1.
The fixed point value ofx1 in each case lies at the intersection
of the curves with the dotted line. Inset shows the corresponding
trajectories in thex1x2 plane. (b) Time evolution ofx1,2,3 for
theh = 4 case after a stable limit cycle is reached (Inset shows
a longer time plot including the transient). Also shown is the
symbolic dynamics for this time evolution.

The stability condition is then

|F ′(x∗)| cos(π/3) < γ. [11]

Fig. 6a shows that|F ′| satisfies this condition forh = 2 (black
curve) but not forh = 4 (red curve), when the other parameters
are kept fixed at the valuesα = 3.0, c = 0.1, K = 1, γ = 1.
Consequently, forh = 2 the trajectory converges to a stable fixed
point, whereas it converges to a stable limit cycle forh = 4, as
shown in the inset of Fig. 6a.

Symbolic Dynamics

In this section we give the mathematical details of the section
“Symbolic dynamics” in the paper. This section is organizedin
the same order as in the main text and we will repeat the state-
ments made there in a mathematically more rigorous way.

Let us useΓ to denote the phase space, i.e. the positive orthant

Γ = {xi > 0} ∀i = 1 . . .N. [12]

In the systems in which trajectories are bounded only when the
concentrations do not grow more than some maximum value (this
is the case of saturated degradation), all the following considera-
tions still hold, with the prescription of takingΓ to be the subset
of the positive orthant in which the concentrations are bounded.

Our goal is to describe how the spaceΓ is partitioned by the
N nullclinesµi defined bygi(xi, xi−1) = 0. The properties we
are about to state are all consequences of the monotonicity of the
functionsgi(xi, xi−1) = 0, the constraint of having bounded and
persistent orbits and the existence of a unique fixed pointx

∗ 1.

1It is worth remarking here that the existence of a fixed point is more acon-
sequence of the boundedness condition, rather than the monotonicity condition.
Indeed, if the functionsfi(xi−1) andf−1

i−1
(xi−1) (see Eq.2) have independent

support, they will obviously have no intersection. But in this case the system will

Returning to the partitioning ofΓ, the first important property
is that any nullcline dividesΓ into two simply connected sets, one
in whichgi(x) > 0 and one in whichgi(x) < 0. Notice also that
these manifolds cannot be tangent at the fixed point because of
monotonicity and since they can depend on at most one common
variable. All these properties imply that theΓ space is partitioned
by the nullclines into2N simply connected subsets, which we
called “sectors” in the main text. In each of these sectors every
component of the vector field has a definite, unchanging, sign.
We use here the same notation as the main text and denote each
of these sectors with a sign vector like(+,−,−....+). As stated
in the paper, the uniqueness of the fixed point and the fact that
the field has a constant sign inside a sector allows one to exclude
the possibility of an attractor entirely contained within asector.
In the rest of this section, we discuss the case in which the fixed
point is unstable. Since we assume that trajectories are bounded,
starting from a sector the trajectory has to leave it by crossing
one of theN boundaries2. We show in Fig. 3 in the main text
that a given boundarygi = 0 can be crossed in just one direc-
tion using a simple, two dimensional example. We show here a
three dimensional example of how a stable periodic orbit crosses
the nullclines. We consider the following model, consisting of
one repressor and two activators (this is similar to one of the 3-
variable models of the p53 system discussed in ref. 3):

dx1/dt = s − x3x1/(K + x1)

dx2/dt = x2
1 − x2

dx3/dt = x2 − x3 [13]

This system of equations has a stable periodic orbit as an attractor
for parameters valuess = 30, K = .1. The phase space portrait,
together with a plot of the nullclines, is shown in Fig.(7).

Indeed, due to the fact that a given nullclinegi = 0 is “flat”
in all directions perpendicular toxi andxi−1, no new topolog-
ical features appear in the higher dimensional cases; in particu-
lar the direction in which this nullcline can be crossed depends
only on the sign ofgi andgi−1, and never on any other nullcline.
This directly follows from the fact that all the manifoldsµi ∩ µj

(intersections of a pair of nullclines) are simply connected; it is
easy use the functionfi(x) defined in Eq.2 to write an explicit
and continuous parameterization of these manifolds. It should be
clear at this point that the following fact is true in any dimension
N : the portion of the nullcline that forms the boundary between
two adjacent sectors can only be crossed in one direction.

In conclusion, since the direction in which the nullclinei can
be crossed depends only on the sign ofgi andgi−1, this direc-
tion can be extrapolated directly from a qualitative analysis of

violate our condition 1: persistence requires thatlimx→0 g(x, y) > 0 ∀y and
boundedness requires thatlimx→∞ g(x, y) < 0 ∀y; in this case, the nullclines
have to cross. This fact is crucial also for the other considerations in this section
on the phase space portrait. Notice that if the system is permanent (a slightly
stronger condition than bounded+persistent), the existence of a fixed point can be
directly demonstrated by means of Brouwer’s fixed point theorem (see e.g., ref.
2).

2Strictly speaking, one has to exclude the possibility that the trajectory leaves
the sector by crossing at the intersection between two nullclines, i.e. one of the
setsµi∩µj . This would correspond to two components of the field changing sign
at the same time. We will not consider this case here since it not robust, occurring
only for a set of parameter values that is of measure zero.
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Fig. 7: Stable periodic orbit and plot of the nullclines for amodel
of the p53 system, defined by the system of equations (13).

the 2-dimensional case, as done in Fig. 3. In other words, all
the nullclines behave qualitatively like one of the two nullclines
sketched in Fig. 7. depending on whether they correspond to an
activating or a repressing interaction, when seen in the(xi, xi−1)
plane. From this it follows that the general rules can be extrapo-
lated directly from the two dimensional case:

• If the variable(i − 1) repressesi, the nullclinei can be
crossed ifgi andgi−1 have the same sign.

• If the variable(i − 1) activatesi, the nullclinei can be
crossed ifgi andgi−1 have opposite signs.

We associate to a given symbol, or sector, the quantityH de-
fined as the number of boundaries that can be crossed from that
sector. Notice thatH = 0 is impossible. For this to happen, the
above rules must be violated by every adjacent pair of signs,i.e.,
the two signs on either end of an activation arrow must be the
same, while the signs on both ends of a repression arrow must be
different. As there are an odd number of repressors, this is im-
possible. Therefore,1 ≤ H ≤ N . When the trajectory crosses a
nullclinegi = 0, as a simple consequence of the transition rules,
H either stays constant if the nullclinegi+1 can be crossed from
the new sector, or decreases by two ifgi+1 cannot be crossed (see
Fig. 8). Physically, if we think of a crossable boundary as anun-
satisfied bond between signi and i − 1 (termed “mismatches”
in the main text),H is the number of such mismatches, hence it
quantifies the level of “frustration” in the system. The timeevo-
lution can then (i) solve two neighboring unsatisfied bonds,or (ii)
shift an unsatisfied bond one place to the right, i.e. fromi to i+1.
As a consequence:H can never increase, and it must always be
an odd number.

We expect the system to end up in a state in whichH = 1
and the unsatisfied bond keeps on moving around the loop in the
direction of the arrows. This represents, at the level of symbolic
dynamics, a single “signal” traveling around the loop. A direct
implication is that the extremal points (maxima or minima) of all
variables should appear in the time series in the order in which
the species are arranged in the cycle.

This is the simplest scenario and is the only one forN < 4.
What can actually happen forN ≥ 4 is thatH = 3 can become a
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Fig. 8: Consequences of crossing a nullcline for the sign vector
and the quantityH . (Upper) A sign is changed between two
mismatches and, consequently,H decreases by 2. (Lower) A sign
is changed next to just one mismatch. In this case, the mismatch
simply moves one step ahead in the loop; the value ofH does not
change.

stable state, with three different signals traveling alongthe feed-
back loop. However, even if there is an attractor withH = 3, it
must anyway coexist with anH = 1 attractor, since if a trajectory
ever starts from, or enters, a sector withH = 1, it can never return
to anH = 3 sector. Furthermore, theH = 3 attractor is likely
to require some fine tuning of parameters to avoid one mismatch
traveling “faster”, catching up and annihilating another one. It is
thus likely that any perturbation or noise would bring the system
to the “ground state” attractor characterized byH = 1, and that
is the one we expect to observe in biological systems.

Unobserved Variables

We conclude by demonstrating that the presence of unobserved
variables does not alter our conclusions. Essentially the rules we
stated depend only on the overall sign of the interaction between
two variables and it is irrelevant if there are species in between
mediating their interaction. We will clarify what we mean with
an example and then give an argument for the general case. The
example is the three-repressor loop of the previous section, in
which one of the species is unobserved. We write its symbolic
dynamics (as in Fig. 6b) and simply cancel the second row:
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[14]

The resulting symbolic dynamics is that of a two species loop
with one activator and one repressor (like the p53-Mdm2 oscilla-
tions in Fig. 1). Here, as expected, two repressing links become
one activating link if the intermediate species,x2, is unobserved.

In general, let us consider two chemical speciesA andB be-
longing to a negative feedback loop, and consider the case in
which all the intermediate chemical species going fromA to B
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are unobserved. We showed that the stationary symbolic dynam-
ics is characterized by a single mismatch moving in the direction
of the loop.

First, suppose that there are aneven number of repressors be-
tweenA andB. Then, it follows that when the mismatch is out-
side the segment of the loop going fromA to B then bothA and
B will be increasing or decreasing together. The reason is that, if
there is no mismatch, two adjacent species have the same increas-
ing/decreasing character if one is activating the other andoppo-
site if one is repressing the other. On the other hand, when the
mismatch lies within this segment the behavior ofA andB will
be opposite, i.e., they will have opposite signs in the symbolic
dynamics. The sign ofB flips when the mismatch passes from
within the segment to outside it. If the intermediate species are
unobserved, just before the sign ofB flips, the signs ofA andB
in the symbolic dynamics will be opposite. Thus, our algorithm
will show thatA activatesB.

Exactly the converse of the above happens when there are an
odd number of repressors betweenA andB. In this case,A and
B have opposite signs in the symbolic dynamics when the mis-
match is outside the segment, and same signs when the mismatch
is inside the segment. Thus, just before the sign ofB flips, the
signs ofA andB will be the same, implying thatA repressesB.

The net effect is that when the intermediate species are unob-
served our algorithm will show that: (i)A activatesB, when there
are an even number of repressors between them, and
(ii) A repressesB, when there are an odd number of repressors
between them.
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