Supporting Appendix This means that the destabilization of the fixed point cary onl
occur via a Hopf bifurcation, i.e. with two complex conjugat
Fixed Point Analysis eigenvalues crossing into the positive real half-plane.
In the simple case in which all the degradation rates arelequa
In this section, we study the fixed point properties of a feetth @nd unchanging (i.é; = -, a constant) the roots of the polyno-
loop composed of an arbitrary numbeé¥, of nodes whose dy-Mial (5) in the complex plane are the vertices of a polygon cen
namics is given by Eq. (1) in the main text, which we repea¢hdgred on—y with a radius| F"’| as sketched in Fig. 5. Therefore,
@ :gZ(A’R)(SCZ',Ii,l) i=1...N. [1] im)
dt
Our analysis proceeds by noting that, using the monotonic-
ity condition, we can write explicit functional relationgtveen R

neighboring variables in the steady state (whefydt = 0)
¢\<f N

QZ(A’R)(Ifk i 1)=0 = af = fi(Aﬁ)(I;k—l) [2]
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Notice that the functiong; have the same monotonicity proper- v ;
ties as they;s with respect to the second argument (for this it is '\ .
necessary that;(x, y) be a monotonicallgecreasing function of
x). By iterative substitution, we obtain

I: = fl(xjfl) = fl(flfl('r;iQ)) == Stable region

= fiofic10 ficgo...0 fipi(x]) = Fi(x) [3]

whereo denotes convolution of functions. Here, we introduced _ o _

the functionF; (x), which quantifies how the speciésnteracts Fig. 5: Sketch of the Hopf bifurcation in the eigenvalue céemp
with itself by transmitting signals along the loop. Notidsa Plane, in the case in which all the degradation rates arel émaa
that if Eq.(3) holds for one value af then it holds for any, constanty.

since it is sufficient to apply;+1() on both sides to obtain the ) _ _ )

equation forz?, | and so on. For feedback loops, much useful if€ fixed point will remain stable as long as

formation can be obtained from the propertiesofz). Firstly, P ‘

by applying the chain rule, we obtain the slopefofz) at x: [F7 (@) cos(m/N) <. [6]
Fi(2) = 11, fj(2j)|z,=- The rh.sis always greater (less) thap, this case, Hopf’s theorem (see e.g. [1]) ensures theesdst

zero if the number of repressors present in the loop is eveat) (0 5 4 periodic orbit close to the transition value, whose quéis
In the former case, there can be multiple fixed points, ibés,is

a necessary condition for multistability. On the other hamiaen T =27/Im()\) [7]
there are an odd number of repressors, thgm) is positive and

monotonically decreasing, meaning that there is one andasrd  Which, in the simple case of equal degradation timescales, b
solution to the fixed point equatiarf = F;(x). The system Eq. comesT’ = 27 /[|F’(z*)| - sin(7/N)]. Notice that the Hopf the-

1 has one unique fixed point, which we denate To perform orem does not ensure that the orbit is stable; however, sirece

the stability analysis, we write the characteristic polynal eval- System is bounded and there are no other fixed points, we expec

Hopf bufurcation

Unstable region

uated at this point the orbit to be attracting, at least close to the transitioin{
Now we apply these ideas to the 3-repressor example digtusse
H A= 020i(x,y)|xmar] = H Oy i (@, Y) | p=z~- [4] inthe main text:
i i

The above equation can be greatly simplified using the oslati =~ dr eyt T (i1 /K;)" i=l..3. [8]
F'(z) = 11, 0y9i(x,y)/0x9i(x,y), which is a consequence of . . )

the implicit function theorem and the chain rule. One thetaits ' "€ coordinates of the fixed point are all equal due to symmetr
the following equation We denote by:* the solution to _the equatiopr = ¢ + af(l+
(x/K)™). Then the characteristic polynomial is simply

N

A 3
H<—+Q_Fmﬂ (5] . a
h; =—|— 9
where theh; = —0,g:(z;, zi=1)|,~ are the degradation rates aotice that this can be written as
the fixed point. Notice that, sincE’(x) is always negative in a
negative feedback loop, all coefficients of the charadien®ly- A 3 -
nomial are non-negative, hence it can not have real postms. ; +1) =F() [10]



a b Returning to the partitioning df, the first important property
is that any nulicline divideF into two simply connected sets, one
in which g;(x) > 0 and one in whichy;(x) < 0. Notice also that

— : these manifolds cannot be tangent at the fixed point becduse o
T " monotonicity and since they can depend on at most one common
1 . . . . .
S I ] I MY variable. All these properties imply that thespace is partitioned

by the nullclines inte2”¥ simply connected subsets, which we
called “sectors” in the main text. In each of these sectoesyev
component of the vector field has a definite, unchanging.. sign
We use here the same notation as the main text and denote each
of these sectors with a sign vector like, —, —....4). As stated

in the paper, the uniqueness of the fixed point and the fatt tha
Fig. 6: A simple genetic oscillator described by Bq(a) Plot of  the field has a constant sign inside a sector allows one ta@cl
Fi(z) for h = 2 (black solid curve) and = 4 (red curve). Other the possibility of an attractor entirely contained withirsector.
parameters are kept fixed: = 3.0, ¢ = 0.1, K = 1, v = L. |n the rest of this section, we discuss the case in which theel fix
The fixed point value of:; in each case lies at the intersectiorjoim is unstable. Since we assume that trajectories anedeal

Of the curves W|th the dOtted "ne. Inset ShOWS the COI’I’ed'FImm Starting from a sector the trajectory has to |eave |t by cr@ﬁs
trajectories in ther;z; plane. p) Time evolution ofz1 23 for  one of theN boundaried We show in Fig. 3 in the main text
the h = 4 case after a stable limit CyCIe is reachd?nbet shows that a given boundaryi — (0 can be crossed in just one direc-
a longer time plot including the transient). Also shown ie thion using a simple, two dimensional example. We show here a
symbolic dynamics for this time evolution. three dimensional example of how a stable periodic orbgses

the nullclines. We consider the following model, consigtof

one repressor and two activators (this is similar to one ef3h
variable models of the p53 system discussed in ref. 3):

The stability condition is then

/ * .
|F'(z*)| cos(m/3) < 7. [11] dofdt = 5 — wam /(K + 1)
Fig. 6ashows thatF”| satisfies this condition far = 2 (black dry/dt = 27 — 9
curve) but not forh = 4 (red curve), when the other parameters des/dt = x5 — a3 [13]

are kept fixed at the values= 3.0, ¢ = 0.1, K =1, v = 1.
Consequently, foh = 2 the trajectory converges to a stable fixeTlhis system of equations has a stable periodic orbit as eatit
point, whereas it converges to a stable limit cyclefiox 4, as for parameters values= 30, K = .1. The phase space portrait,
shown in the inset of Fig.& together with a plot of the nuliclines, is shown in Fig.(7).
Indeed, due to the fact that a given nuliclipe= 0 is “flat”
. . in all directions perpendicular te; andx;_1, no new topolog-
SymbOHC Dynam|CS ical features appear in the higher dimensional cases; icpar
) ) ) ) ) lar the direction in which this nullcline can be crossed dejse
In this s_ectlon we give the mathemat!cal de.talls. of the 9ect|0n|y on the sign of; andg;_1, and never on any other nullcline.
“Symbolic dynamics” in the paper. This section is organied ;g directly follows from the fact that all the manifolgs N 1;
the same order as in the main text and we will repeat the staffersections of a pair of nullclines) are simply connecieis
ments made there in a mathematically more rigorous way.  gagy use the functiofy () defined in Eq.2 to write an explicit
Let us usd’ to denote the phase space, i.e. the positive orthagly continuous parameterization of these manifolds. ltishioe
. clear at this point that the following fact is true in any dims&n
= fw: >0} Vi=1...N. [12] N: the portign of the nullicline thatgforms the boundzry betwee

In the systems in which trajectories are bounded only when f}© adjacent sectors can only be crossed in one direction.
concentrations do not grow more than some maximum value (thi'” conclusion, since the direction in which the nullclinean

is the case of saturated degradation), all the followingsiciera- °€ crossed depends only on the sigrypoéindg;-1, this direc-
tions still hold, with the prescription of takinig to be the subset 10N can be extrapolated directly from a qualitative anialys

of the positive orthant in which the concentrations are lo@ah yiolate our condition 1: persistence requires thiat, .o g(z,y) > 0 Yy and
Our goal is to describe how the spakes partitioned by the boundedness requires that, ... g(z,y) < 0 Vy; in this case, the nuliclines
N nuIIcIinesm defined bygi (%‘7 xiil) = 0. The properties we have to cross. This fact is crucial also for the other comatéiEns in this section
on the phase space portrait. Notice that if the system is geent (a slightly
are a,bOUt to state are all consequenqes of the_monOtonmhyo stronger condition than bounded+persistent), the existefna fixed point can be
functionsg; (z;, z;—1) = 0, the constraint of having bounded angirectly demonstrated by means of Brouwer's fixed point taeo(see e.g., ref.

persistent orbits and the existence of a unique fixed poirt 2).

2Strictly speaking, one has to exclude the possibility thatttajectory leaves

11t is worth remarking here that the existence of a fixed painnhbre acon- the sector by crossing at the intersection between twolmgk; i.e. one of the
sequence of the boundedness condition, rather than thetamicity condition.  setsy.; Ny;. This would correspond to two components of the field chamngign
Indeed, if the functiong; (x;—1) andf,;l1 (z;—1) (see Eg2) have independent at the same time. We will not consider this case here sina itabust, occurring
support, they will obviously have no intersection. But irstbase the system will only for a set of parameter values that is of measure zero.
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Fig. 8: Consequences of crossing a nullcline for the sigtorec
and the quantity/. (Upper) A sign is changed between two
mismatches and, consequentliydecreases by 2L wer) A sign

is changed next to just one mismatch. In this case, the migmat
the 2-dimensional case, as done in Fig. 3. In other words, $iinply moves one step ahead in the loop; the valué afoes not
the nullclines behave qualitatively like one of the two aliles change.

sketched in Fig. 7. depending on whether they correspond to a

activating or a repressing interaction, when seen irf(ther; 1)
plane. From this it follows that the general rules can beagdr
lated directly from the two dimensional case:

Fig. 7: Stable periodic orbit and plot of the nullclines fanadel
of the p53 system, defined by the system of equations (13).

stable state, with three different signals traveling altrgfeed-

back loop. However, even if there is an attractor with= 3, it

must anyway coexist with aH = 1 attractor, since if a trajectory

e If the variable(i — 1) represses, the nuliclinei can be everstarts from, or enters, a sector with= 1, it can never return
crossed ifg; andg;_; have the same sign. to an H = 3 sector. Furthermore, th8 = 3 attractor is likely

to require some fine tuning of parameters to avoid one midmatc

traveling “faster”, catching up and annihilating anotheeolt is

thus likely that any perturbation or noise would bring theteyn

We associate to a given symbol, or sector, the quafiye- to the “ground state” attractor characterized#y= 1, and that
fined as the number of boundaries that can be crossed from Rt One we expect to observe in biological systems.
sector. Notice thatl = 0 is impossible. For this to happen, the

above rules must be violated by every adjacent pair of signs, nobserved Variables
the two signs on either end of an activation arrow must be the

same, while the signs on both ends of a repression arrow rUSR conclude by demonstrating that the presence of unolmserve
different. As there are an odd number of repressors, thisiis {,5riaples does not alter our conclusions. Essentiallyatesmwe
possible. Thereford, < H < N. When the trajectory Crosses &,ted depend only on the overall sign of the interactiomben

nullcline g; = 0, as a simple consequence of the transition rulggy, yariables and it is irrelevant if there are species inveen
H either stays constant if the nullcline, ; can be crossed fromp,giating their interaction. We will clarify what we meantiwi

the new sector, or decreases by twg;if; cannotbe crossed (Seg gxample and then give an argument for the general case. The
Fig. 8). Physically, if we think of a crossable boundary asian example is the three-repressor loop of the previous sediion

satisfied bond between sigrandi — 1 (termed “mismatches” \hich one of the species is unobserved. We write its symbolic
in the main text),H is the number of such mismatches, hence(ﬁ,mmicS (as in Fig. 1§ and simply cancel the second row:
guantifies the level of “frustration” in the system. The tig®-

e If the variable(i — 1) activatesi, the nuliclinei can be
crossed ifg; andg; 1 have opposite signs.

lution can then (i) solve two neighboring unsatisfied bowdsii) 1 — + + + - —
shift an unsatisfied bond one place to the right, i.e. fidai + 1. ) + + — — — +
As a consequencdd can never increase, and it must always be zj — — — + + +
an odd number. _ _
. . + + T1
We expect the system to end up in a state in whith= 1 — | _ - . 4 ) 2 [14]

and the unsatisfied bond keeps on moving around the loop in the
direction of the arrows. This represents, at the level oflsgim  The resulting symbolic dynamics is that of a two species loop
dynamics, a single “signal” traveling around the loop. Aedir with one activator and one repressor (like the p53-Mdm2lasci
implication is that the extremal points (maxima or miniméalb tions in Fig. 1). Here, as expected, two repressing link®bec
variables should appear in the time series in the order ichvhone activating link if the intermediate species, is unobserved.
the species are arranged in the cycle. In general, let us consider two chemical specieand B be-

This is the simplest scenario and is the only onefo< 4. longing to a negative feedback loop, and consider the case in
What can actually happen fo¥ > 4 is thatH = 3 can become a which all the intermediate chemical species going frdano B



are unobserved. We showed that the stationary symbolicrdyna
ics is characterized by a single mismatch moving in the toac
of the loop.

First, suppose that there are @ren number of repressors be-
tweenA andB. Then, it follows that when the mismatch is out-
side the segment of the loop going frafnto B then bothA and
B will be increasing or decreasing together. The reason tsitha
there is no mismatch, two adjacent species have the saneasicr
ing/decreasing character if one is activating the otherapyb-
site if one is repressing the other. On the other hand, when th
mismatch lies within this segment the behaviorbband B will
be opposite, i.e., they will have opposite signs in the syllnbo
dynamics. The sign oB flips when the mismatch passes from
within the segment to outside it. If the intermediate speeise
unobserved, just before the signBfflips, the signs ofA and B
in the symbolic dynamics will be opposite. Thus, our aldorit
will show thatA activatesB.

Exactly the converse of the above happens when there are an
odd number of repressors betwedrand B. In this caseA and
B have opposite signs in the symbolic dynamics when the mis-
match is outside the segment, and same signs when the mismatc
is inside the segment. Thus, just before the sigBdfips, the
signs of A and B will be the same, implying that represse$s.

The net effect is that when the intermediate species are-unob
served our algorithm will show that: (A activates3, when there
are an even number of repressors between them, and
(i) A repressesd3, when there are an odd number of repressors
between them.
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