
American Joumal of Pathology, Vol. 132, No. 1, July 1988
Copyright © Amenican Association of Pathologists

Effiect ofHyperoxia on the Cytoarchitecture of
Cultured Endothelial Cells

PATRICIA G. PHILLIPS, PhD,
PAULJ. HIGGINS, PhD, ASRAR B. MALIK, PhD,

and MIN-FU TSAN, MD, PhD

When confluent pulmonary artery endothelial cells in
culture were exposed to hyperoxia (95% 02 and 5%
C02), they became enlarged and mean corpuscular
volume increased 30-35%. Rhodamine-phalloidin
staining of actin filaments demonstrated that hyper-
oxia was associated with a progressive alteration in the
actin distribution. Three days after oxygen exposure,
the number and thickness of cytoplasmic stress fibers

OXYGEN THERAPY IS an important modality in
the treatment of patients suffering from severe hy-
poxemia. Because of its direct toxic effect on a num-
ber ofcellular processes, however, it carries with it the
risk of exacerbating the underlying lung injury, and
may be a contributing factor in death from respiratory
failure." 2 Ultrastructural studies performed in ani-
mals exposed to hyperoxia indicate that the pulmo-
nary capillary endothelium is a major site of oxygen
toxicity.`~

Cultured endothelial cells have been used as model
systems to study the effect of hyperoxia on the endo-
thelium. A number of events follow the exposure of
endothelial cells to high partial pressures of oxygen,
including cellular enlargement,6 enhanced suscepti-
bility to neutrophil oxidant damage,7 increased neu-
trophil adherence to endothelial cells, and inhibition
of endothelial cell growth in subconfluent cultures.8
We have demonstrated that exposure of endothelial
cell monolayers to hyperoxia for 72 hours results in a
significant increase in permeability to 1251I albumin.9
This finding correlates well with the observation that
animals exposed to elevated oxygen tensions for 3
days develop endothelial cell swelling, coinciding with
interstitial edema, as one of the earliest morphologic
indicators of injury.'0
There is considerable interest in identifying those

cellular elements responsible for maintaining endo-
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were increased, while the peripheral bands were dis-
rupted or absent. Sodium dodecyl sulfate polyacryl-
amide gel electrophoresis revealed that the amount of
filamentous actin was increased in oxygen-exposed
cells, while the total actin content remained un-
changed, suggesting that oxygen exposure shifted the
equilibrium from G actin to F actin. (Am J Pathol
1988, 132:59-72)

thelial integrity in the face of perturbations that may
lead to its destruction. A number ofinvestigators have
suggested that endothelial cytoskeletal elements may
play such a role, because they participate in maintain-
ing cell shape, '12 in the adherence ofcells to subcellu-
lar matrix13'14 and in the formation ofjunctional com-
plexes.15

Studies performed in this laboratory on the effects
of hyperoxia on albumin permeability of endothelial
monolayers have demonstrated marked changes in
actin and vimentin filament distribution with oxidant
exposure.9 Other investigators working with endothe-
lium,16 epithelium,'7 and P388D cells18 have also
noted cytoskeletal alterations in response to oxidant
injury.
We have subsequently examined the temporal rela-

tionship between oxygen exposure and initiation of
size changes as well as cytoskeletal filament distribu-
tion and content. Hyperoxia is associated with a time-
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dependent enlargement of endothelial cells. In addi-
tion, two distinct patterns ofactin filament rearrange-
ments occur with time: an increase in cytoplasmic
stress fibers and disruption of peripheral bands.

Materials and Methods

Culture of Endothelial Cells

The established bovine pulmonary artery endothe-
lial (BPAE) cell line (ATCC, CCL-209) was obtained
at the 16th passage and used at passages 18 through
24 as described previously.'9 Early passage calf pul-
monary artery endothelial (CPAE) cells, 3 through 10
passages, were the gift ofDr. Peter Del Velcchio ofthe
Albany Medical College, and were used for compara-
tive studies. These cells were regarded as endothelial
cells based on their characteristic cobblestone mor-
phology and positive staining for factor VIII antigen.20

Endothelial cells (BPAE) were cultured in Dulbec-
co's Modified Eagle Medium (DMEM) (Gibco,
Grand Island, NY) supplemented with 20% fetal calf
serum (FCS) (Hyclone, Logan, UT) and gentamycin
50 ug/ml. (Schering Corp. Kenilworth, NJ) in Corn-
ing 75 cm2 tissue culture flasks (Corning Glass Works,
Corning, NY). CPAE cells were cultured in the same
media containing 10% serum. For determinations of
cell size profiles, 2 X 105 cells/well were seeded into
Nunc 24 well plates (A/S Nunc Intermed, Denmark).
Cells for cytoskeletal preparations, phase microscopic
and immunofluorescence examination were cultured
in 35-mm dishes at initial seeding densities of7 X 105/
well. All cultures were incubated at 37 C in a 5% CO2
incubator for 3-4 days (until confluent) before expo-
sure to oxygen.

Experimental Design for Exposure of Endothelial
Monolayer to Oxygen

For each experiment, normoxic and hyperoxic
groups were seeded on the same day using cells from
the same passage and origin, and allowed to reach
confluence. In preparation for oxygen exposure, me-
dia was then changed to fresh DMEM supplemented
with either 1% FCS (BPAE and CPAE), 10% (CPAE),
or 20% (BPAE). These cells were maintained in the
5% CO2 incubator and 1 group was designated as nor-
moxic controls. Those cells that were to be exposed to
3 days of hyperoxia were immediately placed in an
oxygen chamber. Cells to be exposed to 2 days of hy-
peroxia were placed in oxygen the next day, and 1 day
samples were placed in oxygen on the following day.
All groups were analyzed on the same day. Thus all

cells were exposed to identical growing conditions, the
only variable being the time spent in a hyperoxic envi-
ronment.
For oxygen exposure, endothelial monolayers were

placed in an oxygen chamber (Bellco Glass, Inc.,
Vineland, NJ), flushed for at least 15 minutes with a
mixture of 95% 02 and 5% C02, and incubated in a
warm room at 37 C. The oxygen chamber was re-
gassed daily or when additional samples were added.
Culure medium P02 levels were at least 650 torr in
hyperoxia-exposed and about 140 torr in control (nor-
moxia-exposed) cultures as measured using a blood
gas analyzer (ABL3 Acid Base Radiometer, Copenha-
gen, Denmark). The pH of the culture media re-
mained constant (7.35-7.45). In some experiments
cells were exposed to either 50% or 80% oxygen as de-
scribed.

Sizing and Counting of Endothelial Cells

Endothelial cells were counted using an electronic
particle counter (Coulter Counter ZM, Coulter Elec-
tronics LTD, Hialeah, FL) as described previously.9
For the total number of endothelial cells, the lower
limit ofthe aperture was set at 9.5888, so that all parti-
cles (cells) with diameters larger than 9.588 ,u were
counted. Preliminary studies revealed that the cell
counts as obtained by the Coulter Counter correlated
well with those obtained by the direct cell counting
using a hemocytometer.2' For the purpose of sizing,
the number of endothelial cells at various size ranges
starting from 9.588 in diameter with 2 , increments
were counted. The instrument was calibrated for ab-
solute volume using 20.38 microspheres purchased
from Coulter Electronics. Recovery of cells by this
fractional counting was 102.9 ± 3% (N = 69). Size
distribution curves were constructed and the mean di-
ameter and mean corpuscular volume were calculated
assuming that endothelial cells in suspension were
spherical.

Visualization of Actin Filaments

Actin filaments were visualized in formalin fixed,
Nonidet p-40 permeabilized cells as described pre-
viously.22

Cytoskeletal Extraction and Gel Electrophoresis

Triton X- 100 resistant fractions ofcontrol and oxy-
gen-treated endothelial cells were prepared by extrac-
tion of monolayer cultures in TN buffer (140 mM
NaCl, 10 mM Tris-HCl, pH 7.6) containing 1% Tri-
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ton X-100 for 5 minutes at 4 C.23,24 After extraction,
the Triton-insoluble residue was scraped into PBS and
collected by centrifugation at 1 3,000g for 3 minutes.
For determination oftotal actin and vimentin, mono-
layers were scraped into Hanks' Balanced Salt Solu-
tion (HBSS), collected by centrifugation, then solubi-
lized in Owen-Witte-Baltimore (OWB) buffer25 that
contained 150mM Tris-Cl, pH 7.4,0.05% sodium do-
decyl sulfate (SDS), 1.0% Na deoxycholate, 150 mM
NaCl, and 1.0% Triton X-100. The TN/Triton insolu-
ble pellet and the solubilized total cell extract (1 part
extract: 3 parts sample buffer) were dissolved by boil-
ing in electrophoresis sample buffer (0.05 M Tris-Cl,
pH 6.8, 10% glycerol, 1% SDS, 1% 2-mercaptoetha-
nol). Proteins were separated by electrophoresis on
SDS-9% acrylamide slab gels under denaturing condi-
tions,26 visualized by staining with Coomassie Bril-
liant Blue R250 dye, and quantitated by densitometry
within the linear range of dye binding sensitivity.27
Low molecular weight proteins of known mass and
purified rabbit skeletal muscle F actin and rat hepa-
toma vimentin served as standards.

Differential Trypsin/Collagenase Sensitivity Assay

For assessment of the relative substratum adher-
ence of control and oxygen-treated cells, the differen-
tial sensitivity to trypsin/collagenase was used as dis-
criminating factor. Trypsin solution was prepared as
described above, but supplemented with 0.05% of
Type IV-S Collagenase (Sigma Co., St. Louis, MO).
Monolayers were washed three times in PBS, after
which 1 ml aliquots of trypsin/collagenase solution
were added, removed at specific intervals for cell
counts, and fresh aliquots added. Detachment of cells
was monitored using an Olympus IM2 inverted phase
microscope to ensure completeness of cell removal.
Data were expressed as the percent ofthe total popula-
tion released as a function oftime oftrypsin/collagen-
ase exposure.

Statistical Analysis

Statistical significance was calculated by the Stu-
dent's t-test.28

Results

Effect of Hyperoxia on the Size of Endothelial Cells

As shown in Figure 1, exposure ofconfluent mono-
layers ofbovine pulmonary artery endothelial cells to
oxygen was accompanied by a marked and time-de-

pendent focal swelling of endothelial cells. Oxygen
treatment for 24 hours (Figure 1B) did not alter the
characteristic cobblestone appearance ofthe endothe-
lium. However, a number of enlarged cells were evi-
dent at 48 hours (Figure IC) and this feature was more
pronounced in 72-hour oxygen-treated cultures (Fig-
ure 1 D). The presence of enlarged cells conferred an
irregular appearance to the endothelial monolayer.
Despite the development of cell enlargement, the
monolayer appeared to be intact with no obvious gaps
seen between cells even after 72 hours ofoxygen expo-
sure.
To evaluate this hyperoxia-induced size change

quantitatively, monolayers were disrupted by trypsin-
ization and the size distribution of cells determined
using an electronic particle counter (Figure 2). Most
endothelial cells (more than 80%) were in the size
ranges from 13-18 ,u in diameter. One day after oxy-
gen exposure, there was no change in the distribution
ofthe cells (Figure 2A). However, after 2 days, the size
distribution curve shifted to the right, eg, the number
ofsmall cells (. 17 ,u in diameter) decreased, while the
number of large cells (> 17 t in diameter) increased
(Figure 2B). A more pronounced shift was observed
after 3 days of exposure. To determine whether cell
enlargement also occurred in early passage cells, sim-
ilar experiments were performed by exposing CPAE
to 95% 02 for 3 days. Table 1 compares sizing data
obtained with BPAE and CPAE. Although normoxic
control baseline values were smaller for CPAE than
for BPAE, oxygen exposure led to a similar magnitude
of cellular enlargement, with increases in mean cor-
puscular volume of 30-35%.

It was of interest to determine whether the size
changes seen with 95% 02 occurred abruptly or could
be discerned at lower concentrations of oxygen. This
was evaluated by exposing CPAE monolayers either
to normoxia or 50, 80, or 95% 02 for 3 days. For these
experiments, cells were maintained in the same con-
centration ofFCS (10%) used for their growth. Table
2 shows that there was no detectable change in cell
size at 50%, and although an increase in diameter and
volume were apparent at 80%, these changes were not
statistically significant. In contrast, there was a clear
increase in these parameters at 95% 02. In addition,
comparison of sizing data from 95% oxygen-exposed
CPAE in Table 1 (cells exposed to oxygen while in 1%
FCS) with that in Table 2 (cells maintained in 10%
FCS), demonstrated that cell enlargement was not de-
pendent on the concentration ofserum in the media.

Hyperoxia and Actin Filament Distribution
Because ofthe hyperoxia-associated changes in cell

size and monolayer conformation as well as the in-
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OXYGEN AND ENDOTHELIAL CYTOARCHITECIURE 63

Figure 1-Effect of hyperoxia on endothelial cells. Endothelial cells (BPAE) were cultured in DMEM supplemented with 20% FCS for 3 days until confluent.
They were then exposed to normoxia or hyperoxia (95% 02) in DMEM plus 1% FCS for 3 days. The cells were visualized directly by phase microscopy.
Normoxia (A) Hyperoxia, 1 (B) 2 (C) or 3 (D) days. Bar, 100 z.

'9

creased albumin permeability described previously,9
it was important to determine whether these changes
in cellular morphology and function were associated
with specific cytoarchitectural changes. The distribu-
tion of actin filaments in cells exposed to oxygen is
shown in Figure 3. Control cells at confluence typi-
cally contained very fine anastomosing complexes of
microfilaments, with the major structure being a
dense peripheral band clearly defining the margins of
cells. Few transcytoplasmic stress fibers were visible
(Figure 3A). With increasing time in oxygen, BPAE
accumulated more transcytoplasmic cables (Figures
3B, C and D). At 3 days, there was an increase in both
the number and thickness of stress fibers while the pe-
ripheral bands of most cells were disrupted or com-
pletely absent (Figure 3D). Although occasional small
gaps were seen between adjacent cells in the mono-
layer after 72 hours of oxygen exposure, this was not
a consistent feature and may have represented fixa-
tion and staining artifacts. This correlated with the in-
tact monolayer appearance seen by phase micros-
copy. Changes in monolayer integrity, such as those
that result in increased permeability to albumin,9 may
involve more subtle changes (perhaps at the level of
cell junctions) than were discernable with phase mi-
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croscopy. CPAE exposed to 3 days of hyperoxia ex-
hibited identical structural rearrangements (Figure 4).

It was important to determine if enlarged cells ex-
hibited unique actin filament distribution characteris-
tics that might predispose them to act as focal areas
for disruption of the monolayer. These features were
studied in monolayers exposed to hyperoxia for 3
days, because focal abnormalities are seen more fre-
quently at this time. Enlarged cells exhibited essen-
tially 3 patterns of actin stress fiber distribution (Fig-
ure 5): 1) parallel arrays oftranscytoplasmic filaments
(Figure 5A); 2) stress fibers, particularly in very large
cells, which appeared to be fewer and thinner then
those of most smaller cells (Figure 5B); and 3) Exten-
sively bundled discontinuous patches of actin stress
fibers (Figures 5C and D). These patterns were, for the
most part, not unique to the enlarged cells and similar
patterns were seen in smaller cells within the oxygen-
exposed monolayer. There did not appear to be any
preferential loss of peripheral bands in enlarged cells
or in cells adjacent to enlarged cells. Rather, the thin-
ning or discontinuity within the cortical actin fila-
ment structure seemed to be common to most cells
within the monolayer at 3 days. Identical results were
obtained when cells were cultured in 20% FCS/

C. 3 Days

- Normoxia
Hyperoxia

I0 14 18 22 26

Diameter (,u)
Figure 2-Effect of hyperoxia on the size distribution of endothelial cells. Endothelial monolayers (BPAE) were cultured and exposed to normoxia or hyperoxia
(95% 02) as described in Figure 1 for 1-3 days. Endothelial cells were then removed by trypsinization and sized using an electronic particle counter (Coulter
Counter ZM). Results are from a representative experiment.
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Table 1 -Effect of Hyperoxia on the Size of Endothelial Cells

BPAE CPAE

Mean diameter (iu)
Normoxia 15.43 ± 0.22 13.88 ± 0.15
Hyperoxia 17.09 ± 0.30* 15.16 ± 0.12*

Mean corpuscular volume (fl)
Normoxia 1,927 ± 48 1,400 ± 46
Hyperoxia 2,617 ± 141 1,824 ± 44*

Percent increase in volume 35.8 30.3
N (number of experiments) 6 4

Endothelial cells were cultured in DMEM supplemented with either 20%
FCS (BPAE) or 10% FCS (CPAE) for 3 days until confluent. They were then
exposed to normoxia or hyperoxia (95% 02) in DMEM plus 1% FCS for 3
days. Endothelial cells were trypsinized and their size distribution deter-
mined using an electronic particle counter. Mean diameter and mean corpus-
cular volume were calculated assuming that endothelial cells in suspension
were spherical. Results were expressed as mean ± SEM.

* P (vs. normoxia) <0.02.

DMEM for oxygen exposure (data not shown), indi-
cating that the observed cytoskeletal alterations were
not dependent on serum concentration.

It was of interest to determine whether the marked
changes in actin filament distribution occurred to the
same extent in cells exposed to lesser concentrations
of oxygen. The results of exposure to normoxia or to
50, 80, or 95% 02 for 3 days are shown in Figure 6.
Cells exposed to 50% oxygen, exhibit few, or only sub-
tle changes (Figure 6B) in comparison to controls
(Figure 6A). However, cells exposed to 80% (Figure
6C), demonstrated some of the features characteristic
of exposures to 95% oxygen (Figure 6D). There was
an increase in the number of stress fibers, enlarged
cells were evident. While peripheral bands appeared
intact in some cells, a number ofthem demonstrated
disruption or loss of this structural feature (Fig-
ure 6C).

SDS-PAGE Analysis of Cytoskeletal Proteins

Gel electrophoretic analysis of cytoskeletal protein
extracts (Figure 7) was performed to quantify the ap-
parent increased content of actin filaments observed

morphologically. Data compiled from 4-6 experi-
ments in Table 3 indicated that exposure to oxygen

results in quantitative increases in cellular filamen-
tous actin. Such increases were occasionally apparent
as early as 24 hours, however, due to variability within
gels at this time period, significance was not achieved
until 48 hours. The content of vimentin, the major
intermediate filament protein ofendothelial cells also
exhibited significant increases in hyperoxia-exposed
cells.
The above results indicated that hyperoxia was as-

sociated with an increase in the amounts of filamen-
tous (detergent resistant) actin and vimentin in endo-
thelial cells. This could be due to an increase in the
total actin and vimentin contents. Alternatively, this
could be due to an altered distribution of actin and
vimentin, while their total cellular contents remained
unchanged. To distinguish these possibilities, we

quantified the total actin and vimentin contents. As
shown in Table 4, hyperoxia had no effect on the total
actin or vimentin contents ofendothelial cells.

Differential Trypsinization

During. the course of our experiments, especially
those that required removal of oxygen-treated cells
from dishes for analysis, it became apparent that these
cells were more adherent than their normoxic coun-

terparts. Furthermore, both morphologic and quanti-
tative data on actin filament distribution had indi-
cated substantial increases in cytoplasmic actin stress
fibers. Actin stress fibers have been shown to partici-
pate in the formation of focal adherence contacts. 13,14
To quantify these apparent differences in substrate ad-
herence directly, cells from each group were analyzed
for differential sensitivity to trypsin/collagenase de-
tachment. Figure 8 shows the results of a representa-
tive experiment (total of4 experiments) performed af-
ter 72 hours of oxygen exposure, indicating a clear
separation in the kinetics of cell detachments for nor-

moxic and hyperoxic cells. Under normoxic condi-

Table 2-Effect of P02 on the Size of Endothelial Cells

Normoxia 50% 02 80% 02 95% 02

Mean diameter (1) 13.86 ± 0.08 13.82 ± 0.05 14.15 ± 0.13 15.23 ± 0.27*
MCVt (fl) 1394 ± 24 1382 ± 15 1483 ± 42 1850 ± 99*
Percent change in volume -0.86 +6.4 +32.7
N 12 6 6 12

Endothelial cells (CPAE) were cultured in DMEM supplemented with 10% FCS for 3 days until confluent. They were then exposed to normoxia or hyperoxia
(either 50,80, or 95% 02) in DMEM plus 10% FCS for 3 days. Cells were trypsinized and their size distribution determined using an electronic particle counter.
Results were expressed as mean ± SEM.

* P (vs. normoxia) <0.01.
t MCV, mean corpuscular volume.
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Figure 3-Effect of hyperoxia on actin filament distribution in endothelial cells. Confluent monolayers (BPAE) were exposed to normoxia (A) or hyperoxia
(95% 02) for 1 (B), 2 (C) or 3 (D) days in 10% FCS/DMEM. Cells were stained with rhodamine phalloidin and examined microscopically. Bar,
50 t.
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Figure 5-Effect of hyperoxia on actin filament distribution in enlarged endothelial cells. Confluent (BPAE) monolayers were exposed to hyperoxia (95% 02)
for 3 days in 1% FCS/DMEM then stained with rhodamine phalloidin and examined microscopically. A-Enlarged cell shows parallel array of filaments
similar to smaller cells surrounding it. B-Cell has stress fibers which appear to be thinner than those of other cells. C and D-Cells exhibiting
extensively bundled, discontinuous patches of stress fibers. Bar, 50 u.

tions, a cumulative total of 80% of the cells had de-
tached by 12 minutes, in comparison to 42% ofhyper-
oxia-exposed cells. A shift in the curve to the right for
hyperoxic cells indicated the presence ofa trypsin/col-
lagenase resistant population that required 18 min-
utes for complete removal.

Discussion

Enlargement of endothelial cells in response to hy-
peroxia has been demonstrated previously in animals

exposed to elevated partial pressures of oxygen,4"10 as
well as in vitro.6 We have used an electronic particle
counter, as described by others29 to size endothelial
cells. This permitted the determination of cell sizes
within the entire cell population. Although direct size
measurements of attached cells were not performed,
matched control and hyperoxic samples were exposed
to the same trypsinization conditions in order to de-
termine relative size distributions. Clear differences,
reflecting the morphologic observations, were seen at
48 and 72 hours at 95% oxygen. These hyperoxia-as-
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Figure 6-Effect of oxygen concentrations on actin filament distribution in endothelial cells. Confluent BPAE monolayers cultured in 20% FCS/DMEM were
exposed to normoxia (A) or hyperoxia at 50% (B), 80% (C), or 95% (D) for 3 days. Cells were stained with rhodamine phalloidin and examined microscopically.
Bar, 50,g.

sociated size changes are independent ofFCS concen-
trations in the culture media or passages of endothe-
lial cells.

Specific cytoskeletal alterations also occur when en-
dothelial cells are exposed to hyperoxia. Oxygen expo-
sure resulted in two distinct cellular response patterns
involving actin filament distribution. Transcytoplas-
mic cables increased both in number and in thickness
with increasing oxygen exposure. These apparent in-
creases in actin microfilaments were confirmed by

polyacrylamide gel electrophoresis of detergent-insol-
uble, cytoskeleton-enriched fractions. It is believed
that, for cultured cells'3"14 and in some instances in
vivo," these stress fibers serve an anchoring function,
maintaining the monolayer firmly attached to the
substratum. The increase in the time of trypsin/colla-
genase exposure required to detach oxygen-treated
cells that had developed an extensive transcytoplas-
mic cable network supports this hypothesis. Although
it is not possible at this time to rule out oxidative
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Figure 7-Increase in cytoskeletal-associated ac-
tin (Ac) and vimentin (V) content in BPAE cells as
a consequence of time of oxygen (95%) exposure.
Within each experimental group (1-3; panel A),
the detergent-resistant cytoskeletal residue from
equivalent number of control or oxygen-treated
cells were solubilized by boiling in aliquots of
Laemmli sample buffer, equivalent volumes
loaded per lane, and the constituent proteins sep.
arated on SDS-9% acrylamide slab gels; individual
peptides were visualized by staining with Coo-
massie Blue R250. Lane designations (in A) are
as follows: (a) actin standard; (b) molecular weight
protein standards - phosphorylase B = 93 kd, bo-
vine serum albumin = 68 kd, ovalbumin = 43 kd,
carbonic anhydrase = 31 kd, soybean trypsin in-
hibitor = 22 kd; (c, d, e) experiment 1, 72 hour
oxygen, 24 hour oxygen, normoxia control, re-
spectively; (f, g, h) experiment 2, 72 hour oxygen,

48 hour oxygen, 24 hour oxygen, respectively; (i, _
j, k, I) experiment 3, 72 hour oxygen, 48 hour oxy-
gen, 24 hour oxygen, normoxia control, respec-
tively. Quantitative scanning densitometric analy-
ses of electrophoretic separations (panel B; data
from experiment 3 is illustrated as one example)
revealed significant increases in the vimentin and
actin contribution to the cytoskeletal-associated
protein fraction of BPAE cells as a function of oxy-
gen exposure.

changes in other components of the cell-to-substrate
junctional complex which might influence adherence,
these data suggest that one aspect ofthe cells' adaptive
machinery may include alterations in the actin cy-
toskeleton which favor substrate anchorage.
While stress fibers are commonly seen in some

types of cells in culture, they are observed in vivo in
only a few settings. They occur in arterial endothelial
cells in experimentally induced3' or spontaneous hy-
pertension,32 in myofibroblasts involved in wound
healing,33 in regenerating liver, and in several human
carcinomas,34 and in cells exposed to high shear stress
such as in the aortic arch or in heart valves.32 35 In-
creases in stress fibers in cultured cells can be elicited
by exposing the cells to increasing shear force simulat-
ing the in vivo condition.36'37 These perturbations re-

sult in extensive reorganization of both F actin fila-
ments and in the cellular fibronectin network beneath

Table 3-Effect of Hyperoxia on the Cytoskeletal Proteins
of Cultured Endothelial Cells

Duration of Filamentous actin Filamentous vimentin
exposure (% control) (% control)

1 day(N=4) 136±41 149±23
2 days (N = 6) 149 ± 16* 129 ±17
3days(N = 6) 212 ± 39* 197 ± 34*

Confluent endothelial cell monolayers were extracted with TN/Triton
buffer at 40C. The detergent insoluble pellets were solubilized by boiling in
electrophoresis sample buffer and run on 9% SDS-PAGE. Coomassie blue
stained bands were quantitated by scanning densitometry. Results are ex-
pressed as mean ± SEM.

* P (vs. Control) <0.05.

Caotrol day

v v

.-NV
-Ac

2day

B

the cell monolayer.37 From the results of our analysis
of total actin in cells exposed to hyperoxia, it seems
likely that since there does not appear to be more total
actin, the increase in the number and thickness of fil-
aments may result from a shift in the equilibrium
from G actin to F actin in these cells. Similar shifts in
equilibrium favoring F actin are also observed in tu-
mor cells and regenerating liver,34 and in migrating
cells.38'39
We have consistently observed that 3-day oxygen

exposure leads to disruption ofthe peripheral band of
actin filaments.9 Although both cytoplasmic and cor-
tical actin filaments are specifically stained with phal-
loidin, they exhibit different sensitivities to disruptive
agents such as cytochalasin4o and ethchlorvynol,4'
and appear to serve different functions within the cell.
The dense peripheral bands in endothelial cells share
many similarities with the circumferential band ofmi-

Table 4-Effect of Hyperoxia on the Total Contents of Actin
and Vimentin in Cultured Endothelial Cells

Actin Vimentin
Duration of exposure (% control) (% control)

1 day 127 114
2 days 103 95
3 days 100 102

Confluent endothelial cell monolayers were scraped into HBSS, collected
by centrifugation and the pellet solubilized with OWB buffer. An aliquot was
then boiled (1:3) with electrophoresis sample buffer and run on 9% SDS-
PAGE. Coomassie blue stained bands were quantitated by scanning densi-
tometry.
The results were the mean of 2 independent experiments.
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Figure 8-Effect of hyperoxia on trypsin/collagenase sensitivity of endothe-
lial monolayers. Cells were exposed either to normoxia or hyperoxia (95%
02) for 3 days. Monolayers were treated with trypsin/collagenase solution
and the number of calls which detached at specific intervals was deterrnined.
Results are from a representative experiment.

crofilaments seen in the apical portion of epithelial
cells.424 These cells form tight monolayers where the
apical actin bundles are associated with the vinculin
adhaerens junction present at the interface between
adjacent cells in the monolayer.424 It has been pro-
posed that the vinculin plaques observed in endothe-
lial cells may be part of a junction similar to the
adhaerens junction. 5 It is interesting that the micro-
filament-adhaerens junction complex has been dem-
onstrated to regulate permeability across epithelial
monolayers.454 Thus loss or disruption ofthis crucial
structural element may compromise the integrity of
the endothelial monolayer as manifested by increased
permeability. Two agents that preferentially target ac-
tin peripheral bands in endothelial cells, cytochalasin
and ethchlorvynol, have been shown to lead to in-
creased lung wet weight'0 and reversible pulmonary
edema,47 respectively.

It is interesting that alterations in actin filament dis-
tribution appear to be dependent upon the partial
pressure of oxygen. Exposure to 50% oxygen elicited
only subtle changes, while progressive disruption was

observed at 80% and 95%. Oxygen toxicity is generally
attributed to the intracellular generation of oxygen
radicals.48 The concentration of these oxygen radicals
is proportional to the PO2 of the media.49 Likewise,
the severity of oxidant damage in animal models and
in man is a function of the oxygen level used.S° It ap-
pears in our studies that cytoarchitectural changes are
dependent on this factor as well. Whether this is a di-
rect effect on actin filaments or whether they are man-
ifesting changes occurring in some other structural
component remains to be determined. For example,
since a number of calcium-dependent cortical cy-
toskeletal proteins are linked to the membrane by
binding to lipid molecules,51'52 oxidation oflipid mol-
ecules may alter the character ofthe bond directly and
lead to structural disruptions.
Our studies have addressed only actin filaments as

part of the putative adhaerens complex. It is reason-
able to assume that other actin binding proteins such
as vinculin, a-actinin, and myosin may also be altered
in the course of oxygen exposure. It seems unlikely
from our observations of actin filaments in endothe-
lial cells with progressive 02 exposure that enlarged
cells act as foci for weakening of cell-cell contacts, a
feature that may be necessary for increased permeabil-
ity to macromolecules. Rather, this disruption of cor-
tical actin filaments appears to be a common feature
seen in most cells after 72 hours. Investigations of
other proteins that stabilize the membrane skeleton
and may participate in maintaining endothelial bar-
rier function are currently under way in this labora-
tory.
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