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1 The PCWT class

The PCWT class of distributions considered in the paper is defined by three
probability axioms. Below, we consider a random vector X as a set of variables
{X1, . . . Xn}, and let capital letters R, S, T, U denote any disjoint subsets of
those variables, while Xk ∈ X denotes a single variable. The notation S⊥T |R
denotes the conditional independence P (S, T |R) = P (S |R)P (T |R).

Definition 1 The PCWT class is defined as the set of distributions that satisfy
the following probability axioms:

Strict Positivity: P (S) > 0
Composition: S⊥T |R ∧ S⊥U |R =⇒ S ⊥ T ∪ U |R
Weak Transitivity: S⊥T |R ∧ S⊥T |R ∪Xk =⇒ S ⊥ Xk|R ∨Xk ⊥ T |R

A thorough treatment of these axioms can be found in e.g. Pearl (1988). Its
relevance for biological data, in particular microarray data, is discussed in the
main paper.

2 Proof of theorem 1

We here give the full proof of theorem 1 of the main paper, which asserts that if
the independence tests used are correct (which holds for any consistent test in
the sample limit), the RIT algorithm is correct. First we remind the reader of
the definition of multivariate differential expression (MDE) as given in equation
(2) of the main paper:
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Definition 2 The set of MDE genes are those Xi satisfying

M = {Xi : ∃S ⊆ X : Xi 6⊥Y | S}.

For the proof of theorem 1, we will need the following well-known properties,
given by Pearl (1988).

Theorem 1 Let R, S, T, U denote any disjoint subsets of the variables X. Any
probability distribution satisfies the following properties:

Symmetry: S⊥T |R =⇒ T ⊥S|R
Decomposition: S⊥T ∪ U |R =⇒ S⊥T |R
Weak union: S⊥T ∪ U |R =⇒ S⊥T |R ∪ U

Contraction: S⊥T |R ∪ U ∧ S⊥U |R =⇒ S⊥T ∪ U |R

Theorem 2 (Main paper theorem 1) For any PCWT data distribution, the
set of MDE genes M is identical to the set of genes M̂ = {Xk ∈ X} for which
there exists a sequence Zm

1 = {Z1, . . . , Zm} ⊆ X between Z1 = Y and Zm = Xk

such that Zi 6⊥Zi+1|∅, i = 1, . . . ,m− 1.

Proof: Let M̂ c = X \ M̂ and fix any Xk ∈ M̂ c. Since Y ⊥Xk|∅ and Xi⊥Xk|∅
for any Xi ∈ M̂ , we have {Y } ∪ M̂ ⊥M̂ c|∅ by the composition property. Then
Y ⊥ Xk|S for any S ⊂ X \ {Xk, Y } by the weak union and decomposition
properties, so Xk /∈ M .

For the converse, fix any Xk ∈ M̂ and let Zm
1 = {Z1, . . . , Zm} be a shortest

sequence between Z1 = Y and Zm = Xk such that Zi 6⊥Zi+1|∅ for i = 1, . . . , m−
1. Then we must have Zi⊥Zj |∅ for j > i + 1, or else a shorter sequence would
exist. We will prove that Z1 6⊥ Zm|Zm−1

2 for any such shortest sequence, by
induction over the sequence length m. The case m = 2 is trivial. Consider the
case m = p. By the induction hypothesis, for any i < p and any chain Zi

1 we
have Z1 6⊥Zi|Zi−1

2 . By construction of the sequence,

Z1⊥Zi|∅, 3 ≤ i ≤ p =⇒ Z1⊥Zi
3|∅ (1)

(composition)
=⇒ Z1⊥Zi|Zi−1

3 . (2)
(weak union)

Now assume to the contrary that Z1 ⊥ Zp|Zp−1
2 . Together with (2), weak

transitivity implies

Z1⊥Z2|Zp−1
3 ∨ Z2⊥Zp|Zp−1

3 .

The latter alternative contradicts the induction hypothesis. The former together
with (1) implies Z1⊥Zp−1

2 |∅ by contraction, which implies Z1⊥Z2|∅ by decom-
position. This is a contradiction; therefore we conclude that Y 6⊥Xk|Zm−1

2 , and
thus Xk ∈ M . ¤
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3 FDR control

A p-value for a null hypothesis H0 is a statistic p satisfying

P (p ≤ α |H0) ≤ α.

In the RIT algorithm, we need to ensure that the p-values of the ”top genes”,
selected according to some threshold, still satisfy this property. This is non-
trivial due to multiplicity, which causes the ”top” statistics p(1), p(2). . . . to be
skewed towards zero even under H0. The following lemma shows that the FDR-
controlling procedure by Benjamini and Hochberg (1995) yields p-values.

Lemma 3 Assume p1, . . . pn0 are independent p-values corresponding to true
null hypotheses H1

0 , . . .Hn0
0 , while pn0+1, . . . pn are p-values corresponding to

the remaining false null hypotheses, taking any joint distribution on [0, 1]n−n0.
Then the Benjamini-Hochberg procedure

p′(i) =
np(i)

i

satisfies
P (p′(i) ≤ α |Hi

0) ≤ α

Proof: Since the p1, . . . pn0 are independent, the p(i)|Hi
0 are order statistics of

a U(0, 1) distribution. These are well known to be beta distributed,

p(i) ∼ Beta(i, n− i + 1),

and therefore

P (p′(i) ≤ α |H0) = P (p(i) ≤ iα/n |H0)

= Iiα/n(i, n− i + 1)

where Iz is the regularized incomplete beta function. For all α, this function
takes its largest value for i = 1, so it suffices to note that for all n,

Iiα/n(1, n) = 1−
(
1− α

n

)n

≤ α. ¤

Note that the procedure by Storey (2003) with π0 = 1 is identical to Benjamini-
Hochberg, and so this can also be used. We believe that this lemma holds for
other FDR-controlling procedures as well, although we have not attempted to
find a general proof.

Having secured the p-value property, the following theorem formally establishes
the induction step in the RIT algorithm. This basically shows that, when given
a set of p-values in a previous iteration of RIT, the correction procedure used
results in p-values also in the next iteration. Thus, by induction, the RIT
algorithm always produces p-values. Below, we assume that the set S is selected
using the above correction procedure so that we indeed have ”proper” p-values
throughout.
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Theorem 4 Assume that the distribution of (X,Y ) is PCWT. For a given set
S ⊆ X and Xi ∈ S, let pi be a p-value for the null hypothesis Hi

0 : Xi /∈ M .
Choose an Xj /∈ S, and let pij be p-values for Hij

0 = Xi⊥Xj |∅ for each Xi ∈ S.
Then the null hypothesis

Hj
0 =

⋂

i∈S

(Hi
0 ∪Hij

0 ) (3)

holds true if Xj /∈ M , and

pj = |S|min
i∈S

(max{pi, pij})

is a p-value for Hj
0 .

Proof: Since the data distribution is PCWT, we know from theorem 1 that

∃Xi : Xi ∈ M ∧Xi 6⊥Xj | ∅ =⇒ Xj ∈ M

Negating this, we obtain

Xj /∈ M =⇒ ∀Xi : Xi /∈ M ∨Xi⊥Xj | ∅

Thus, equation (3) is a null hypothesis for Xj /∈ M . Further, since pi and pij

are p-values, it holds that

P (pi ≤ α |Hi
0) ≤ α and P (pij ≤ α |Hij

0 ) ≤ α.

It is now easy to verify that

P (pj ≤ α |Hj
0) = P

(
|S|min

i∈S
(max{pi, pij}) ≤ α |

⋂

i∈S

(Hi
0 ∪Hij

0 )

)

≤
∑

i∈S

P
(
max{pi, pij} ≤ α/|S| |Hi

0 ∪Hij
0

)

≤
∑

i∈S

P
(
pi ≤ α/|S| |Hi

0 ∧ pij ≤ α/|S| |Hij
0

)

≤
∑

i∈S

min
{

P (pi ≤ α/|S| |Hi
0), P (pij ≤ α/|S| |Hij

0 )
}

≤ |S| · α/|S| = α

which proves that pj is a p-value for the null hypothesis (3). ¤

We note that this theorem is similar to the results concerning intersection-union
testing derived by Berger (1982). A summary of the RIT algorithm with these
corrections for error rate control is given in supplementary figure 2.
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4 Gaussian distributions and PCWT

We here provide a proof that the family of multivariate Gaussian distributions is
contained in PCWT. This proof is essentially the same as that given by Studený
(2004, pp. 36-37).

Theorem 5 Any multivariate Gaussian f(x) = N(x|µ, Σ) distribution satisfies
strict positivity, composition and weak transitivity.

Proof: Strict positivity is immediate. As above, let R,S, T, U denote any
disjoint subsets of the variables X. Let ΣS×T denote the sub-matrix of Σ with
rows corresponding to the variables in S and columns corresponding to T , and
let ΣS|T be the (quadratic) covariance matrix of the conditional variable S|T .
Then the composition property

S⊥T |R ∧ S⊥U |R =⇒ S ⊥ T ∪ U |R
is equivalent to

(ΣST |R)S×T = 0 ∧ (ΣSU |R)S×U = 0 =⇒ (ΣSTU |R)S×TU = 0

for the Gaussian case. Noting that (ΣSTU |R)ST×ST = ΣST |R and similarly
(ΣSTU |R)SU×SU = ΣSU |R for any Gaussian (marginalizing out a variable does
not change the remaining covariances) proves the above implication and thus
proves the composition property. Similarly, the weak transitivity property

S⊥T |R ∧ S⊥T |R ∪Xk =⇒ S ⊥ Xk|R ∨Xk ⊥ T |R
is equivalent to

(ΣST |R)S×T = 0∧(ΣST |RXk
)S×T = 0 =⇒ (ΣSXk|R)S×Xk

= 0∨(ΣXkT |R)Xk×T = 0

Since every matrix in the above is conditioned on R, we may write Σ′ = ΣX\R|R
and simplify this to

(Σ′ST )S×T = 0 ∧ (Σ′ST |Xk
)S×T = 0 =⇒ (Σ′SXk

)S×Xk
= 0 ∨ (Σ′XkT )Xk×T = 0

Because of the previously established composition property, it holds in general
that

S⊥T |R ⇐⇒ ∀Xi ∈ S,Xj ∈ T : Xi⊥Xj |R,

so that it suffices to prove the weak transitivity relation for all such pairs Xi, Xj ,
that is,

σ′ij = 0 ∧ σ′ij|k = 0 =⇒ σ′ik = 0 ∨ σ′kj = 0.

Rewriting

σ′ij|k = σ′ij − σ′ikσ′kj/σ′kk = 0 ⇐⇒ σ′ijσ
′
kk = σ′ikσ′kj

and using σ′ij = 0 gives the result. ¤
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5 Simulation with ”large blocks”

The simulation provided in the main paper considers a situation with genes
interacting in ”blocks” of size 4. To investigate the performance of RIT with
larger such blocks, we considered the case where both the MDE genes M and
the remaining ”irrelevant” genes X \M have banded covariance matrices,

Σ =




2 −1

−1 2
. . .

. . . . . . −1
−1 2




.

This results in two large ”blocks”. The mean vector µ were the same as in
the first simulation. The result from this simulation is qualitatively similar
(supplementary figure 1). RIT and the t-test still controls FDR as expected,
while only RIT achieves 100% power asymptotically. RFE performs better here
in terms of FDR, but still provides low power.
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