
SI Appendix 1

Partition Function and Free Energy Minimization

Here we provide more details of our statistical mechanical formulation.

Using Eq. 2 for the total partition function Qtot and applying Stirling’s

approximation for the factorial (1),

lnx! ≈ x ln x − x +
1

2
ln(2πx) , [9]

to the Helmholtz (canonical ensemble) free energy A = −kBT lnQtot, the

per-ligand free energy in units of kBT may be written as
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where we have omitted [ln(2πN (b)
c )+ ln(2πN (f)

r )+ ln(2πN
(f)
l )]/(2Nl) because

when Nl � 1, these contributions are negligible in comparison to the listed

terms. The Nl � 1 condition is satisfied by the experimental system we aim

to model. (N (b)
c , N

(f)
l ≤ Nl by definition, and N (f)

r ≤ Nl for γ = 1.)

Using the definitions in the main text for θ and γ and noting that N (f)
r /Nl =

γ − θ, we cast the above equation in the form of

A

NlkBT
= θ ln

θ

Q
(b)
c

+ (γ − θ) ln
(γ − θ)

Q
(f)
r

+ (1 − θ) ln
1 − θ

Q
(f)
l

+ (1 + γ − θ) (ln ρl − 1) . [11]
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This free energy takes into account all possible configurations and dictates

their relative statistical weights. In general, the properties of a system are de-

termined by Boltzmann averaging over all possible configurations. However,

if the configuration distribution over a certain variable is sharply peaked, the

behavior of the system is well approximated by that of the most probable

configuration for that variable. We are primarily interested in the fraction of

ligands bound, θ. The most probable θ is determined by minimizing A, i.e.,

requiring
∂

∂θ

A

NlkBT
= 0 . [12]

Applying this condition to Eq. 11 leads to

0 = − ln Q(b)
c + ln Q(f)

r Q
(f)
l + ln

θ

(1 − θ) (γ − θ)
− ln ρl . [13]

This is a quadratic equation in θ,

(1 − θ) (γ − θ)

θ
=

Q(f)
r Q

(f)
l

Q
(b)
c ρl

, [14]

that can be readily solved to yield Eq. 3. The other solution for θ is discarded

because for Q(f)
r Q

(f)
l /Q(b)

c ρl > 0 (which always holds) and irrespective of γ,

it always gives θ > 1 which contradicts the definition of θ requiring it to be

≤1.

How representative is the most probable θ for the behavior deriving from

the ensemble encompassing all possible configurations? We have tested the

accuracy of the ∂A/(NlkBT )/∂θ = 0 approximation for the γ = 1 case. When

γ = 1, Eq. 11 may be rewritten as

A(θ)

NlkBT
= ln


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Q(f)
r Q

(f)
l

Q
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[15]
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Fig. 5. An example calculation illustrating the accuracy of the ∂A/(NlkBT )/∂θ = 0

free energy minimization approximation. The upper and lower panels show, respectively,

A (θ) / (NlkBT ) and probability density p (θ) as a function of θ for ρl = 0.5Kd (solid

curves) and ρl = 2.0Kd (dotted curves). p (θ) is shown for Nl = 102 (broad peaks) and

Nl = 103 (sharp peaks).

where the last term Q(f)
r Q

(f)
l is independent of θ. Using this relation, we

have verified that for sufficiently large Nl, the configurational population

distribution over θ is sharply peaked, and therefore the most-probable-θ ap-

proximation is reasonably accurate (SI Fig. 5). In a more extensive analysis

(data not shown), we have also verified numerically that ∆θ, the full width

at half maximum of the p (θ) = exp[−A(θ)/kBT ] distribution, decreases with

increasing Nl and scales in accordance with ∆θ ∼ 1/
√

Nl as expected.

3



Polyampholytic Effects: Polarizable Charge Distribution

of a Disordered Ligand Can Enhance Binding Affinity

Our analysis in the main text has been based on the simplifying assumption

that the charge distribution of the disordered ligand remains unchanged upon

binding. This assumption is useful as a first approximation, but is limiting.

While we will leave in-depth analyses using higher-resolution chain modeling

to future work, it is instructive to explore here how possible adjustments of

charge distribution might impact binding affinity. A defining characteristic

of the disordered ligands of interest here is that they are polyampholytes —

polymer molecules with both positive and negative charges (2, 3). In gen-

eral, because of an induced dipole effect, the polarizable charge distribution

of a disordered polyampholyte can lead to stronger attractive electrostatic

interactions with charged objects. For instance, a semi-quantitative scaling

argument stipulates that an overall neutral polyampholytic chain is attracted

to a charged sphere by an interaction energy ∼ −(rc/〈r〉)4, where 〈r〉 is the

separation between the charged sphere and the center of mass of the polyam-

pholyte and rc is a cross-over separation at which the polyampholyte deviates

from an overall Gaussian shape (4).

As an illustration of such an effect, we consider here a toy model describ-

ing the interaction between a sphere of charge qr (> 0) and a Gaussian chain

containing two effective charges, +q and −q (q ≥ 0) separated by a distance

l, the average value of which is l0 when q = 0 and qr = 0 (Fig. 6A). Thus,

l0 ∼
√

N , where N is the (contour) length of the polymer chain (5) connect-

ing the ±q effective charges. Deviation of l from l0 entails deformation of

the Gaussian chain distribution and thus an unfavorable decrease in chain

conformational entropy. Theory for rubber elasticity (6) suggests that this

effect may be captured approximately by a free energy term ∼ [(l − l0)/l0]
2.

We include this contribution as part of an effective interaction energy of the
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Fig. 6. A toy model for polyampholytic effects in the binding of a disordered protein. (A)

Schematics of a flexible Gaussian chain in the free state (upper drawing) and when it is

bound to a charged sphere at a distance 〈r〉 from the center of the chain (lower drawing).

Note that the average distance in the free state between the ±q effective charges, for q 6= 0,

will be <l0 because of electrostatic attraction between them. (B) Binding energy (see text)

as a function of 〈r〉 for Gaussian chains with an average spatial separation between the

two charges equals to l0 = 5 Å (upper two curves) and l0 = 10 Å (lower two curves)

when each of the chains is far away from other charges. For each l0, the binding energy is

shown for both a stiff chain (dashed curves – weaker bound, higher binding energy) and a

flexible chain (solid curves – tighter bound, lower binding energy). The following numerical

parameters are used in this example: q = 0.1, qr = 3, α = 0.1, σ = 10, erep = 0.1, and

rrep = 1. Distance and energy are in Å and kcal/mol, respectively.

model system:

Eeff(qr; 〈r〉, l =
−qqr

εd(〈r〉 − l/2)
e−α(〈r〉−l/2) +

qqr

εd(〈r〉 + l/2)
e−α(〈r〉+l/2)

− q2

εdl
e−αl + σ

(

l − l0
l0

)2

+erep

[

(l − rrep)
−12 + (〈r〉 − l/2 − rrep)

−12
]

, [16]

where σ ∼ T may be treated as a constant because the present analysis
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does not consider temperature dependence, and an excluded-volume radius

rrep as well as a repulsive energy parameter erep are introduced to provide

a crude account of chain excluded volume effects. For simplicity, a single

dielectric constant εd = 5.0 is used for all three electrostatic terms. We

determine the average effective interaction energy 〈Eeff(qr; 〈r〉)〉 between the

charge sphere and the Gaussian chain at a given center-of-mass separation

〈r〉 by performing a Boltzmann average of Eeff(qr; 〈r〉, l) over l at T = 298

K. The binding energy as a function of center-of-mass separation between

the charged sphere and the Gaussian chain is then given by 〈Eeff(qr; 〈r〉)〉 −
〈Eeff(qr = 0; 〈r〉)〉. Fig. 6B compares the results from this toy model for a

flexible chain with polarizable charge distribution (l allowed to vary) and a

stiff chain with a fixed charge distribution (l fixed at l0, corresponding to

σ → ∞), and how this difference in behavior is affected by the chain length

between the +q and −q effective charges.

Fig. 6B shows that, at small 〈r〉, flexible polymers can adjust l so that

the binding energy becomes more favorable than if the polymers are stiff.

Owing to their higher degrees of conformational freedom, the longer polymer

can gain more energetic favorability (more negative binding energy) through

conformational deformation than the shorter polymer. The binding energy

of the longer polymer is also consistently more favorable both for the stiff

and for the flexible cases, because of the larger separations 〈r〉 + l between

qr and +q, and hence less Coulombic repulsion between this pair of positive

charges.

These results are broadly consistent with a Kd for 7-fold phosphorylated

Sic1 (1-90) of ∼ 1 µM (T.M., W.-Y. Choy, S. Orlicky, F. Sicheri, L. Kay,

M.T., and J.D.F.-K., unpublished data). Using the same model parameters

as for those of the short peptides underestimates the affinity. Thus, it is ex-

pected that polarization effects within the full-length Sic1 will be important

for tight binding.
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