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If we assume that capsid has a shape of an oblate upon deformation (see Fig. 6 a 

and b), it is rather simple to show that following relations are valid for the volume and 

area of an oblate under the deformation with the force F along the short axis of the capsid 

from 2r0 to 2r0 rshort = 2r0 – D: 
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where V0 and A0 are volume and area of the spherical capsid before the deformation: 
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If we make an approximation that the area of the oblate is constant under 

deformation, then Eq. 8 can be used to describe how xlong varies as a function of xshort 

under capsid deformation. Fig. 7 shows this variation. 

 As a good approximation for relation between xlong and xshort for an oblate with 

constant mantle surface, for xshort > 0.4 the following relation can be used: 
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xlong "1.5 # 0.5 $ xshort                                                   [10] 

By combining this relation with Eq. 7, one can construct the following relation between V 

and xshort for an oblate with a constant mantle surface: 
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Now, taking the derivative of Eq. 9 with regard to the length of deformation D, we will 

obtain the following equation for the derivative dV / dD: 
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which implies that the contribution to the resisting force F(D) from the osmotic pressure 

of DNA in the viral capsid can be described by: 
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where c0 is DNA concentration in the undeformed capsid.                                                  

 Similar relation is obtained also if we assume that the spherical capsid is deformed 

to a truncated sphere with a constant area, see Fig. 6c. One can show that for a truncated 

sphere, the following relations are describing capsid’s volume and area: 
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By combing Eqs. 14 and 15 the following relation between V, A and xshort can be 

constructed: 
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By taking the derivative of Eq. 16 with regard to the length of deformation D, we will 

obtain the following relation for the derivative dV / dD if area is constant: 
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The same result as in Eq. 13 is obtained for the DNA osmotic pressure contribution to the 

force of capsid deformation F(D). 
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Figure Captions: 

 

Fig. 6 (a) An undeformed spherical capsid with radius r0; b) deformed oblate capsid and 

c) truncated spherical capsid with the length of short axis = 2r0 xshort and the length of 

long axis = 2r0 xlong (where x is the scaling prefactor). 

 

Fig. 7. The relative length of the oblates long axis, xlong, as a function of the relative 

length of the short axis, xshort, for oblates with the same area of the mantle surface (solid 

line). Dashed line illustrates an almost linear relation.  

 


