SUPPLEMENTAL MATERIAL

Supplemental text

How to derive the relationship between τ**o and** τ**o, obs ?**

If the pdf (probability density function) of the closed times is a single-exponential pdf represented by the equation: $f(t)=(1/\tau_{c1})*\exp(-t/\tau_{c1})$, the fraction of all closed events shorter than the filter dead time (t_d) is $P(t \le t_d) = 1-\exp(-t_d/\tau_{c1})$. Since >95% of all closed events belongs to the first component, we can make the approximation $P(t \le t_d) \approx 1$ -exp(t_d/τ_{c1}) even for our 4-exponential closed-time distribution. This fraction of closed events will not be detected; we will only detect the fraction of events longer than the filter dead time, given by $P(t>t_d) = \exp(-t_d/\tau_{c1})$. Therefore, our apparent overall closing rate (koc_{obs}) will be slower than the real overall closing rate koc_{real} $(=$ ko1+ko2). The relationship is $koc_{obs} = koc_{real} * P(t>t_d)$, because koc is proportional to the number of closures and we can only detect a fraction $P(\triangleright t_d)$ of all closures. Therefore, koc_{obs} = koc_{real}*exp(-t_d/ τ_{c1}). Because $\tau_{0.0bs} = 1/\text{koc}_{obs}$ and $\tau_{0.0} = 1/\text{koc}_{real}$, we can write $\tau_{0.0} = \tau_{0.0bs} * \text{exp}(-t_d/\tau_{c1})$. In our article τ_o stands for τ_{o,real}.

Figure legends

Figure S1. Bar charts comparing various selected single-channel parameters for the SUR and TMD0 channels obtained at -40 mV.

Statistical significance was calculated using an unpaired Student *t*-test and significant differences were found for the pairs of parameters marked by brackets ($**$ for $p<0.05$).

Figure S2. Bar charts comparing various selected single-channel parameters for the SUR and TMD0 channels obtained at -100 mV.

Statistical significance was calculated using an unpaired Student *t*-test and significant differences were found for the pairs of parameters marked by brackets ($**$ for $p<0.05$).

Figure S3. No detectable voltage dependence of ATP inhibition.

A. Time course of a macroscopic current in response to different ATP concentrations at two membrane potentials. Current was recorded from a macropatch expressing SUR2A/Kir6.2∆26 in the inside-out configuraton. The same patch was exposed to a series of [ATP] *(bars)* both at -100 and at -40 mV. B. ATP dose response curves at -100 and -40 mV are superimposable. There is no difference in the IC50 or the Hill coefficients obtained at the two membrane potentials.

TABLE S1

Number of SUR/Kir6.2∆**26 recordings whose closed times were best fitted with 3-5 exponentials***

 ${{^*{\sf n}}_{\sf i}}$ denotes the number of recordings that could be best fitted with i exponentials. The percentages of n_i are in parentheses.

TABLE S2

Single channel parameters for chimera/Kir6.2∆**26 measured at -40 mV***

 * τ_{ci}, a_{ci}, τ_b, τ_{ib}, τ_o and N are defined in the Methods section; γ – single-channel conductance; Po – open probability; n – number of recordings used for the analyses; values are given in mean \pm SEM

Rate constants for studied channels (+ Kir6.2∆**26)***

* rate constants obtained at -40 mV are bolded and italicized; rate constants obtained at -100 mV are in parentheses; values were given in mean \pm SEM

FIGURE S1

FIGURE S2

0

20

0

0

2

0.000.01

FIGURE S3

