### SUPPLEMENTAL MATERIAL

### Supplemental text

#### How to derive the relationship between $\tau_0$ and $\tau_0$ , obs?

If the pdf (probability density function) of the closed times is a single-exponential pdf represented by the equation:  $f(t)=(1/\tau_{c1})*exp(-t/\tau_{c1})$ , the fraction of all closed events shorter than the filter dead time  $(t_d)$  is  $P(t \le t_d) = 1-exp(-t_d/\tau_{c1})$ . Since >95% of all closed events belongs to the first component, we can make the approximation  $P(t \le t_d) \approx 1-exp(-t_d/\tau_{c1})$  even for our 4-exponential closed-time distribution. This fraction of closed events will not be detected; we will only detect the fraction of events longer than the filter dead time, given by  $P(t>t_d) = exp(-t_d/\tau_{c1})$ . Therefore, our apparent overall closing rate (koc<sub>obs</sub>) will be slower than the real overall closing rate koc<sub>real</sub> (= ko1+ko2). The relationship is koc<sub>obs</sub> = koc<sub>real</sub>\*P(t>t\_d), because koc is proportional to the number of closures and we can only detect a fraction  $P(t>t_d)$  of all closures. Therefore, koc<sub>obs</sub> = koc<sub>real</sub>\*exp(-t\_d/\tau\_{c1}). In our article  $\tau_o$  stands for  $\tau_{o,real}$ .

#### **Figure legends**

## Figure S1. Bar charts comparing various selected single-channel parameters for the SUR and TMD0 channels obtained at -40 mV.

Statistical significance was calculated using an unpaired Student *t*-test and significant differences were found for the pairs of parameters marked by brackets (\*\* for p<0.05).

## Figure S2. Bar charts comparing various selected single-channel parameters for the SUR and TMD0 channels obtained at -100 mV.

Statistical significance was calculated using an unpaired Student *t*-test and significant differences were found for the pairs of parameters marked by brackets (\*\* for p<0.05).

#### Figure S3. No detectable voltage dependence of ATP inhibition.

A. Time course of a macroscopic current in response to different ATP concentrations at two membrane potentials. Current was recorded from a macropatch expressing SUR2A/Kir6.2 $\Delta$ 26 in the inside-out configuraton. The same patch was exposed to a series of [ATP] (*bars*) both at -100 and at -40 mV. B. ATP dose response curves at -100 and -40 mV are superimposable. There is no difference in the IC50 or the Hill coefficients obtained at the two membrane potentials.

### **TABLE S1**

|         |         | n <sub>3</sub> | n <sub>4</sub> | n <sub>5</sub> | Total |  |  |
|---------|---------|----------------|----------------|----------------|-------|--|--|
| SUR1    | -40 mV  | 2 (17%)        | 4 (33%)        | (33%) 6 (50%)  |       |  |  |
|         | -100 mV | 1 (8%)         | 5 (38%)        | 7 (54%)        | 13    |  |  |
| SUR2A   | -40 mV  | 4 (50%)        | 3 (38%)        | 1 (12%)        | 8     |  |  |
|         | -100 mV | 4 (31%)        | 8 (61%)        | 1 (8%)         | 13    |  |  |
| Overall |         | 11 (24%)       | 20 (43%)       | 15 (33%)       | 46    |  |  |

# Number of SUR/Kir6.2∆26 recordings whose closed times were best fitted with 3-5 exponentials\*

 $n_i$  denotes the number of recordings that could be best fitted with i exponentials. The percentages of  $n_i$  are in parentheses.

### TABLE S2

|                      | Chimera 1                           | Chimera 2                         | Chimera 3        | Chimera 4                            |
|----------------------|-------------------------------------|-----------------------------------|------------------|--------------------------------------|
| γ (pS)               | 63.6 ± 3.8                          | $60.3\pm5.6$                      | $62.3\pm2.5$     | 65.3 ± 2.0                           |
| Po                   | $0.80\pm0.04$                       | $0.86\pm0.02$                     | $0.84\pm0.02$    | $0.82\pm0.03$                        |
| τ <sub>c1</sub> (ms) | $0.23\pm0.011$                      | $0.19\pm0.001$                    | $0.19\pm0.006$   | $0.20\pm0.006$                       |
| $\tau_{c2}$ (ms)     | $2.24\pm0.34$                       | $1.90\pm0.26$                     | $2.42\pm0.38$    | $2.00\pm2.78$                        |
| τ <sub>c3</sub> (ms) | $13.03\pm2.12$                      | $10.77\pm0.82$                    | $17.42\pm4.90$   | $11.15\pm0.88$                       |
| τ <sub>c4</sub> (ms) | $1786 \pm 649$                      | $\textbf{2382} \pm \textbf{1490}$ | $1828\pm782$     | $3918\pm2078$                        |
| a <sub>c1</sub> (%)  | $98.24\pm0.46$                      | $99.35\pm0.07$                    | $99.09\pm0.12$   | $99.01\pm0.32$                       |
| a <sub>c2</sub> (%)  | $1.15\pm0.33$                       | $0.42\pm0.06$                     | $0.58\pm0.08$    | $0.64\pm0.15$                        |
| a <sub>c3</sub> (%)  | $0.59\pm0.15$                       | $0.22\pm0.04$                     | $0.32\pm0.06$    | $0.35\pm0.17$                        |
| a <sub>c4</sub> (%)  | $0.011\pm0.002$                     | $0.005\pm0.001$                   | $0.010\pm0.003$  | $0.008\pm0.003$                      |
| τ <sub>o</sub> (ms)  | $1.75\pm0.05$                       | $1.72\pm0.14$                     | $1.69\pm0.04$    | $1.75\pm0.09$                        |
| τ <sub>ib</sub> (ms) | $5.96\pm0.91$                       | $4.89\pm0.35$                     | $4.67\pm0.36$    | $6.63\pm0.96$                        |
| Ν                    | $\textbf{70.35} \pm \textbf{20.46}$ | $160.51 \pm 21.00$                | $124.23\pm20.24$ | $124.63 \pm 26.48$                   |
| $\tau_{b}^{}$ (ms)   | $140.37 \pm 40.45$                  | $307.56 \pm 48.47$                | $234.55\pm37.34$ | $\textbf{251.32} \pm \textbf{58.43}$ |
| n                    | 4                                   | 4                                 | 4                | 7                                    |

### Single channel parameters for chimera/Kir6.2∆26 measured at -40 mV\*

\*  $\tau_{ci}$ ,  $a_{ci}$ ,  $\tau_{b}$ ,  $\tau_{ib}$ ,  $\tau_{o}$  and N are defined in the Methods section;  $\gamma$  – single-channel conductance; Po – open probability; n – number of recordings used for the analyses; values are given in mean  $\pm$  SEM

|            |                        |                 |                                  |                  | (                                  |                 | /                |                        |
|------------|------------------------|-----------------|----------------------------------|------------------|------------------------------------|-----------------|------------------|------------------------|
|            | <i>k</i> <sub>43</sub> | k <sub>34</sub> | k <sub>32</sub>                  | k <sub>23</sub>  | k <sub>20</sub>                    | k <sub>O2</sub> | k <sub>01</sub>  | <i>k</i> <sub>10</sub> |
| SUR1       | 1.8 ± 0.6              | 4.0 ± 0.8       | 120.9 ± 7.6                      | 86.8 ± 15.4      | 331.6 ± 27.2                       | 13.1 ± 1.9      | 611.2 ± 19.9     | 5279 ± 99              |
|            | (1.1 $\pm$ 0.2         | $0.6\pm0.2$     | $74.6\pm5.5$                     | $55.0\pm10.9$    | $153.3\pm11.3$                     | $29.4\pm2.6$    | $982.5\pm25.2$   | 3244 ± 69)             |
| SUR2A      | 4.2 ± 2.0              | 8.5 ± 4.0       | 135.3 ± 21.2                     | 74.2 ± 8.9       | 372.6 ± 41.0                       | 2.6 ± 0.4       | 630.6 ± 31.3     | 5452 ± 236             |
|            | (1.2 $\pm$ 0.4         | $1.2\pm0.5$     | $90.7 \pm 12.3$                  | 46.0 ± 11.7      | $127.2\pm7.6$                      | $21.0 \pm 2.4$  | $1040 \pm 22.8$  | 3572 ± 89)             |
| S1-TMD0    | 1.1 ± 0.3              | 6.0 ± 1.1       | 123.6 ± 13.9                     | 43.9 ± 4.1       | 595.3 ± 37.2                       | 43.9 ± 5.4      | 643.6 ± 21.3     | 5062 ± 126             |
|            | (1.1 $\pm$ 0.3         | $0.7 \pm 0.2$   | $\textbf{75.6} \pm \textbf{3.9}$ | $158.3 \pm 22.4$ | $443.3\pm43.2$                     | $55.5\pm3.6$    | $878.1 \pm 23.8$ | 3342 $\pm$ 96)         |
| S2-TMD0    | 1.5 ± 0.5              | 5.2 ± 0.8       | 143.4 ± 12.1                     | 71.3 ± 11.7      | 477.9 ± 31.5                       | 40.8 ± 3.6      | 620.4 ± 23.6     | 5184 ± 88              |
|            | (0.9 $\pm$ 0.2         | $1.0\pm0.2$     | $99.4 \pm 6.47$                  | 133.7 ± 11.7     | $\textbf{388.7} \pm \textbf{32.0}$ | $58.5\pm4.6$    | $987.6 \pm 28.5$ | 3427 ± 74)             |
| Chimera 1  | 1.6 ± 1.0              | 3.7 ± 2.1       | 131.0 ± 33.5                     | 115.2 ± 21.3     | 321.5 ± 29.8                       | 9.0 ± 2.3       | 537.9 ± 26.0     | 4495 ± 191             |
| Chimera 2  | 1.0 ± 0.3              | 3.8 ± 0.9       | 121.8 ± 20.4                     | 109.5 ± 27.8     | 354.0 ± 46.3                       | 3.2 ± 0.4       | 555.5 ± 49.6     | 5398 ± 44              |
| Chimera 3  | 1.4 ± 0.4              | 4.6 ± 0.9       | 102.5 ± 19.2                     | 78.1 ± 7.8       | 274.2 ± 21.9                       | 4.3 ± 0.5       | 541.4 ± 14.7     | 5270 ± 146             |
| Chimera 4  | 1.6 ± 1.1              | 3.2 ± 0.2       | 134.1 ± 24.3                     | 96.3 ± 17.3      | 324.3 ± 20.2                       | 5.2 ± 2.1       | 548.6 ± 30.5     | 5004 ± 144             |
| S2-TMD0-L0 | 1.6 ± 0.4              | 8.2 ± 1.2       | 125.3 ± 9.2                      | 66.22 ± 6.4      | 551.5 ± 32.6                       | 21.8 ± 1.1      | 511.7 ± 6.8      | 4669 ± 62              |

Rate constants for studied channels (+ Kir6.2∆26)\*

\* rate constants obtained at -40 mV are bolded and italicized; rate constants obtained at -100 mV are in parentheses; values were given in mean  $\pm$  SEM

## **FIGURE S1**





### **FIGURE S2**











**FIGURE S3** 



