Microscopic model which generalizepS1]. As aboveg; andd; are lowering and raising

Under the assumption of fast equlibration between the slesand ~ ©Operators, acting on the number%fmolecules. The firstterm in this
the enzyme, the probability of having/sz complexes givenn  €quationis the incoming fluxof the substrate, and the last term is th
substrate molecules amiiz enzymes is given by equatidi8] of ~ flux of end product. Let us try to solve the steady-state éouidty

the main text. To write the partition function explicitly,endefine ~ Plugging a solution of the forna (m., mo, - -+ ,mr) = [1gi(ms),
u(z) = U(z,1 — m — Ng; —K), whereU denotes the Confluent Yielding
Hypergeometric function [1]. One can then write the pamtitsum , _ ,

. . gi m’L +1 gi Mi+1 1 i
asZm,np = (—K)~VEu(—m). The turnover rate is then given by ¢ 5(11( +Z 7n1+1 gi(ma ;g EE L) ) ’win)i]
Wi = 22NE[—m (1 —m)]/[u(—m)], which can be approximated i

i mr +1
by Equation| 4]. + [w fnLL)HigL( r+1) wi]=0. [S5]

gr(mz)

Influx of metabolites Motivated by the solution t§S1], we try to satisfy this equation
A metabolic reactiorin vivo can be described as turnover of an in-py choosingg; (m) = ¢™/ e, w}(j)_ With this choice we have
coming flux of substrate molecules, characterized by aBogsocess (1, + 1)/g(m) = c¢/wm+1 agdg(m —1)/g(m) = wm/c. Itis
with ratec, into an outgoing flux. To find the probability of having  now straightforward to verify that indeed

substrate molecules we write down the Master equation,

%ﬂ(m):[c(a—l)—F(d—l)wm}ﬂ(m) <w£,{1 - >+Z< S = wd)+(e—wil)) =0. (s8]

=c[r(m—1) — 7(m)] + [Wmt1m(m + 1) — wpm(m)], . . )
[S1] Finally, in our choice ofg;(m) we replacew J by the MM- rate

vim; /(m; + K;), and find that in facy; (m) = m;(m), namely
where we took the opportunity to define the lowering and rais-

ing operatorsa and a, which — for any functioni(n) — satisfy

ah(n) = h(n — 1), ah(0) = 0, andah(n) = h(n +1). The m(my,ma,...;me) = [ [ mi(mi) [S7]
first term in this equation is the influx, and the second is theliem- i

ical reaction. The solution of this steady state equatiai the form s stated i 8].

w(m) ~ ™/, wr (Up to a normalization constant), as can be

verified by plugging it into the equation, End-product inhibition

m(m—1) m(m+1) Equation[ 13] of the main text is a self-consistent equation for tr
{ (7 1) (meﬂ w n)} steady- state flux through a pathway regulated via end-product inh
bition. Using considerations analogous to what led to tlaetsesult
—c (“’_m _ 1) + ( ¢ Wing1 — wm) =0. [32] on the product measure distribution for the cyclic pathwayes con-
¢ Wm+1 jecture that even for the present case of end-product tidribithe
Using the approximate form ab,,,, as given in4], the probability ~ distribution function can still be approximated by the prodmea-
7(m) takes the form, sure[ S7] with the form of the single node distributions given[t83].
The fluxc enters the calculation of the average on the right-hand s
_(m+ K+ (Ne—-1) K+Ng _m through the probability functiom(m). Solving this equation for
m(m) = (1-2) z [S3] yields the steady state current, and consequently detesittie mean

w(m)

m
occupancy and standard deviation of all intermediates.
as given in equatiop5] of the main text. To verify the validity of this conjecture, and to demonsgrits
application, we consider the cake= 1. In this case one can carry
Directed linear pathway the sum, and find
We now derive our key results, equatip8] (The result has been o L
derived previously in the context of queueing networks Ejd of Z [1 + (mr/Kr) ] mr(mer) [S8]
mass-transport systems [3]). To this end we write the Masen- =0
tion for the joint probability functionr = 7(m1, ma,--- ,mz), _ co(l _ z) Ly F (K, K13 K1+ 1; 2)
L—-1

iﬂ = |e(ar — 1) + Z(diai+l _ 1)w$n) + (an — 1)’@3 ™, vyith z =c/vr and2 Fq the hypergeometric function [1J. This equa
dt tion was solved numerically, and plotted in supporting feg@(a)
[H4] for some values oK; and K. Note that predictions based on th

=1
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product measure (lines) are in excellent agreement withrébelts  expansion of the hypergeometric function [1]. For examplieen
of numerical simulation (circles) for the different setspaframeters Kr < Ky,

tried.

Results obtained from equati¢i$8] can be used, for example, (1— Z)KLQFl(KI, Kp;Ki+1;2) ~ _ vKr . [S10]
to compare the flux that flows through the noisy pathway with th I+ Kr — Kr
mean-field fluxeyr, obtained when one ignores fluctuationsin,  \\hich yields
L.e., co c—cur LU_L [S11]

CMF = [Sg] CMF Kr co ’

1+ (sp/Kn)"~
The fractional differencéc = (¢ — emr)/cemr is plotted in support-  Thus the effect of end-product fluctuations on the curreabfsganced
ing figure 2(b). The results show that number fluctuationsénend- by stronger binding of the inhibitor (smalléf; ), as one would expect.
product alwaysncrease the flux in the pathway sinc& > 0 always.  We note that obtaining these predictions from Monte-Cairlwuta-
Quantitatively, this increase can easily be several pérdeor large  tion is rather difficult, given the fact that one is interesteere in
co, a simplifying expression can be derived by using an asytigpto sub-leading quantities.
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