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Microscopic model
Under the assumption of fast equlibration between the substrate and
the enzyme, the probability of havingNSE complexes givenm
substrate molecules andNE enzymes is given by equation[3] of
the main text. To write the partition function explicitly, we define
u(x) = U(x, 1 − m − NE ;−K), whereU denotes the Confluent
Hypergeometric function [1]. One can then write the partition sum
asZm,NE

= (−K)−NE u(−m). The turnover rate is then given by
wm = k2NE

V
[−mu(1−m)]/[u(−m)], which can be approximated

by Equation[4].

Influx of metabolites
A metabolic reactionin vivo can be described as turnover of an in-
coming flux of substrate molecules, characterized by a Possion process
with ratec, into an outgoing flux. To find the probability of havingm
substrate molecules we write down the Master equation,

d

dt
π(m) = [c(a − 1) + (â − 1)wm] π(m)

= c[π(m − 1) − π(m)] + [wm+1π(m + 1) − wmπ(m)] ,
[S1]

where we took the opportunity to define the lowering and rais-
ing operatorsa and â, which – for any functionh(n) – satisfy
ah(n) = h(n − 1), ah(0) = 0, and âh(n) = h(n + 1). The
first term in this equation is the influx, and the second is the biochem-
ical reaction. The solution of this steady state equation isof the form
π(m) ∼ cm/

Qm
k=1 wk (up to a normalization constant), as can be

verified by plugging it into the equation,
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Using the approximate form ofwm, as given in[4], the probability
π(m) takes the form,

π(m) =

 

m + K + (NE − 1)

m

!

(1 − z)K+NE zm , [S3]

as given in equation[5] of the main text.

Directed linear pathway
We now derive our key results, equation[8] (The result has been
derived previously in the context of queueing networks [2],and of
mass-transport systems [3]). To this end we write the Masterequa-
tion for the joint probability functionπ ≡ π(m1, m2, · · · , mL),

d

dt
π =

"

c(a1 − 1) +

L−1
X

i=1

(âiai+1 − 1)w(i)
mi

+ (âL − 1)w(L)
mL

#

π ,

[S4]

which generalizes[S1]. As above,ai andâi are lowering and raising
operators, acting on the number ofSi molecules. The first term in this
equation is the incoming fluxc of the substrate, and the last term is the
flux of end product. Let us try to solve the steady-state equation by
plugging a solution of the formπ(m1, m2, · · · , mL) =

Q

gi(mi),
yielding

c[
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X
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+ [w
(L)
mL+1

gL(mL + 1)

gL(mL)
− w(L)

mL
] = 0 . [S5]

Motivated by the solution to[S1], we try to satisfy this equation
by choosinggi(m) = cm/

Qm
k=1 w

(i)
k . With this choice we have

g(m + 1)/g(m) = c/wm+1 andg(m − 1)/g(m) = wm/c. It is
now straightforward to verify that indeed
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Finally, in our choice ofgi(m) we replacew(i)
m by the MM- rate

vimi/(mi + Ki), and find that in factgi(m) = πi(m), namely

π(m1, m2, . . . , mL) =
L
Y

i=1

πi(mi) , [S7]

as stated in[8].

End-product inhibition
Equation[13] of the main text is a self-consistent equation for the
steady- state fluxc through a pathway regulated via end-product inhi-
bition. Using considerations analogous to what led to the exact result
on the product measure distribution for the cyclic pathways, we con-
jecture that even for the present case of end-product inhibition, the
distribution function can still be approximated by the product mea-
sure[S7] with the form of the single node distributions given by[S3].
The fluxc enters the calculation of the average on the right-hand side
through the probability functionπ(m). Solving this equation forc
yields the steady state current, and consequently determines the mean
occupancy and standard deviation of all intermediates.

To verify the validity of this conjecture, and to demonstrate its
application, we consider the caseh = 1. In this case one can carry
the sum, and find

c =
∞
X

mL=0

c0

h

1 + (mL/KI)
h
i−1

πL(mL) [S8]

= c0(1 − z)KL
2F1(KI , KL; KI + 1; z)

with z = c/vL and2F1 the hypergeometric function [1]. This equa-
tion was solved numerically, and plotted in supporting figure 2(a)
for some values ofKI andKL. Note that predictions based on the
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product measure (lines) are in excellent agreement with theresults
of numerical simulation (circles) for the different sets ofparameters
tried.

Results obtained from equation[S8] can be used, for example,
to compare the flux that flows through the noisy pathway with the
mean-field fluxcMF, obtained when one ignores fluctuations inmL,
i.e.,

cMF =
c0

1 + (sL/KI)h
. [S9]

The fractional differenceδc = (c − cMF)/cMF is plotted in support-
ing figure 2(b). The results show that number fluctuations in the end-
product alwaysincrease the flux in the pathway sinceδc > 0 always.
Quantitatively, this increase can easily be several percent. For large
c0, a simplifying expression can be derived by using an asymptotic

expansion of the hypergeometric function [1]. For example,when
KI < KL,

(1 − z)KL
2F1(KI , KL; KI + 1; z) ∼ vLKL

1 + KL − KI
, [S10]

which yields
c − cMF

cMF
∼ 1

KI

vL

c0
. [S11]

Thus the effect of end-product fluctuations on the current isenhanced
by stronger binding of the inhibitor (smallerKI ), as one would expect.
We note that obtaining these predictions from Monte-Carlo simula-
tion is rather difficult, given the fact that one is interested here in
sub-leading quantities.
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