Study	No. of pts with/ without MLL-PTD ^a	Age range (y)	Induction Regimen Included Etoposide	Postremission treatment of pts with <i>MLL</i> -PTD ^b			Comparison of clinical outcome of CN-AML pts with/without <i>MLL</i> -PTD						No. (%) ^c of pts with
				Chemo- therapy only	Auto SCT in CR1	Allo SCT in CR1	CR rates (%)	P	CRD median (mo)	P	OS median (mo)	P	mLL-PTD in CR1 beyond 2 y
Current study	24/214	18-59	yes	4	18	0	92/83	.39	12/30 ^d	.55	not reached/ 44	.67	9 (41)
Döhner et al. ⁹	18/203	16-60	yes	8	2	3	89/78	.74	8/19	.02	13.4/20	.43	0^{e}
Caligiuri et al. ⁷	11/87	18-84	no ^f	7	0	0	70 ^g /71	1.0	7/23	.01	13.8/20.1	.06	1 (14)
Schnittger et al. ⁸	10/30	50-73 ^h	no	7	0	0	71 ⁱ /NR	NR	NR ^j	NR ^j	NR ^j	NR ^j	0
Steudel et al. ^k	8/161	16-60	yes	no¹	yes ¹	yes ¹	NR	NR	3/20 ^d	NS	NR	NR	NR
Yu et al. ^m	7/27	NR ⁿ	no	yes ¹	yes ¹	yes ¹	NR	NR	NR	NR	2.7/6.8	NS	NR
Shiah et al. ¹⁷	5/NA	NR	no	1	0	1	40/NR	NR	NR ^o	NR ^o	NR ^o	NR ^o	1 (50)
Muñoz et al. ¹⁰	5/25	16-60	yes	no ^l	yes ¹	yes ¹	NR	NR	NR ^p	NR ^p	NR	NR	1 (NR)

Pts indicates patients; SCT, stem-cell transplantation; auto SCT, autologous SCT; allo SCT, allogeneic SCT; CR, complete remission; CR1, first CR; CRD, CR duration; OS, overall survival; NR, not reported, NS, not significant.

^a Numbers of patients with a normal karyotype for whom outcome data are available.

^b Numbers of patients receiving postremission treatment, if available.

^c Percent calculated among patients who achieved a CR.

^d Median disease-free survival.

^e Five patients were censored before 2 years.

^f Etoposide was included in the induction regimen of 2 (2%) of 96 patients who received induction treatment.

^g Calculated among patients who received induction treatment (one of 11 patients did not).

^h Age range provided only for 10 cytogenetically normal patients with *MLL*-PTD.

¹ Calculated among patients with a normal karyotype who received induction treatment (three of 10 patients did not)

Only a comparison of clinical outcome of a group of 15 patients with MLL-PTD (including 10 with a normal and 5 with abnormal karyotype) with clinical outcome of a group of 30 age matched karyotypically normal patients was reported. Patients with MLL-PTD had shorter OS (median, 5 vs 12 months, P=0.006) and relapse-free survival (median, 4 months vs median not reached, P<0.001).

^k Steudel C, Wermke M, Schaich M, et al. Comparative analysis of *MLL* partial tandem duplication and *FLT3* internal tandem duplication mutations in 956 adult patients with acute myeloid leukemia. Genes Chromosomes Cancer. 2003;37:237-251.

¹ Based on general description of treatment administered to all patients included in the study. No data on therapy administered in cytogenetically normal patients with or without *MLL*-PTD are provided.

^m Yu M, Honoki K, Andersen J, Paietta E, Nam DK, Yunis JJ. MLL tandem duplication and multiple splicing in adult acute myeloid leukemia with normal karyotype. Leukemia. 1996;10:774-780.

ⁿ Median age of patients with *MLL*-PTD was 62 years and of those without *MLL*-PTD 55 years.

 $^{^{\}circ}$ A comparison of clinical outcome of cytogenetically normal patients (both adults and children; numbers of adults and children in each group not reported) with and without *MLL*-PTD revealed no significant differences in CRD (median, not reached vs 10 months, P=0.490) and OS (median, 4.5 vs 12 months, P=0.164).

^p 2-year event-free survival rates were 20% for patients with and 66% for patients without *MLL*-PTD (*P*=0.03).