


where V was a vertical vector of potentials in the different VS cells, and I was the

corresponding horizontal current vector. This described the current spread in the network

in the steady state since the capacitive properties of the cells were neglected. To obtain

good results, we chose the following parameters: a homogeneous electrical coupling ge1-9,

the negative conductance gi and different input conductances gIN1,10 for VS1 and VS10,

and for VS2-9 gIN2-9. This separation of individual input conductances was necessary

because in VS1 and VS10, effective input conductances were increased by an additional

conductance to only one neighboring neuron as opposed to two neighbors in the other VS

cells and decreased by the negative conductance representing inhibition which connected

them both to each other. Since the main attenuation is most likely to occur on the way

from the electrode to the location of the synapses within the VS cells, we chose to inject

only 0.5 nA (instead of 10 nA as in the experiment) in this simplified model. In this

constellation, the model could be fitted to a linearly decaying voltage from VS1 model

(for parameters, see SI Table 1) while keeping the input resistance of the cells in the

network at measured 4 MΩ (SI Fig. 5A). This resulted in an entirely symmetrical system.

Simulation of current injection in all VS cell models yielded a linear signal decay in both

directions as was the case in the full model (SI Fig. 5B). By means of this connectivity,

signals of VS cells become filtered by a triangular filter function.

Analytical Formulation of the Linear Relationship

In opposition to a passive cable in which the potential decays exponentially, as in

XeXf −=)(  [3]

where X is the spatial distance in electrotonic terms (in units of the electrotonic length

constant λ), the connectivity scheme in the VS network can be interpreted as a realization

via inhibition of a subtraction from Eq. 3 of an exponentially decaying signal spreading

backwards from VS10 at an electrotonic distance XC away from VS1:
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This equation (4) becomes linear earlier (at higher electrotonic distances) than the simple

exponential decay. SI Fig. 5C shows example traces of both equations for different

electrotonic distances XC. This effect can be better understood when observing the Taylor

expansion of both equations. The Taylor expansion of Eq. 3 using X0 = 0 is
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and of Eq. 4 is
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This equation reveals that the second order term (together with all other even order terms)

becomes zero when XC gets smaller. To illustrate that this happens in a relevant range of

XC, the difference between both functions and a simple line is displayed in SI Fig. 5D. To

obtain the linearity measure for Eqs. 3 and 4 at different XC, the curves were individually

scaled to the interval [0, 1]. Subsequently, the integral over the absolute difference

between each curve and a straight line was calculated and plotted in SI Fig. 5D as a

function of XC. As a comparison, fitting the current transfer in the VS network model at

the axon (as in Fig. 2F) to Eq. 4 yielded an electrotonic distance of 2.3 λ between VS1

and VS10.

Eqs. 3 and 4 represent the potential decay in cables of infinite length. To additionally

consider first order edge effects in this small network, the exponential decay in Eq. 3 can

be complemented by an additional term:
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The corresponding VS network potential decay of Eq. 4 becomes
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The additional part therefore represents just a subtraction of spatially separated

exponential decays which equally becomes linear.

Significance of Triangular Filter

Triangular filters such as we find in the VS network have the characteristic to linearly

interpolate input signals from neighboring points where the signal is zero. This can be

seen in SI Fig. 5E in which the responses to different input conditions in the VS cell

network model are plotted, once in the primary dendrite and at the axon terminal region.

When the signal of one VS cell is severely compromised in the dendrite, the missing

value at the input is interpolated linearly in the axon terminal (SI Fig. 5E). Even when

many input values are missing, the VS cell network model interpolates a good

approximation of the linear relationship from the actual input signals it receives (SI Fig.

5F). In this way, the VS network is able to fill in, by linear interpolation, the gaps in the

optic flow signal which result from textureless areas. The linear interpolation makes

sense when put in the context of self-rotational optic flow in which amplitudes of motion

vectors scale linearly with horizontal disparity (SI Fig. 5G).




