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Human colonocyte detoxification

Detoxification or biotransformation of drugs and xenobiot-
ics are usually linked with liver metabolism, yet colonocytes
of the gastrointestinal tract have an equal capacity to medi-
ate these processes.1 2 This brief overview specifically
discusses the ability of human colonocytes, but not other
tissues, to detoxify chemical agents and relates pertinent
findings to ulcerative colitis and some aspects of colon
cancer. Failure to detoxify, leading to epithelial cell
damage, or an exaggerated capacity to biotransform, lead-
ing to carcinogen formation in colonocytes, have been the
main implications in disease processes.
In general, two categories of detoxification processes are

recognised (table 1)3 4: phase I reactions concern oxidation,
reduction and hydrolysis within the cytosol, and phase 2
reactions require ATP and concern conjugation with a
donor substrate synthesised in the cell. Both reactions need
enzymes such as oxidoreductases, hydrolases, transferases,
and lyases. Amongst these may be subclasses, genetic poly-
morphism and variability of enzyme activity in organs and
along the gastrointestinal tract. Particularly, diVerences in
enzyme activity in the proximal and distal colon may
occur.5 6

Biochemists, pharmacologists, toxicologists, molecular
biologists, geneticists, oncologists, and gastroenterologists
are involved in this field of study, from each of which infor-
mation is now drawn together. Many new toxicological
advances made with liver and lung tissues still have to be
applied to colonocytes and would be a fruitful area of
future research. The subject of clinical gastrointestinal
toxicology7 makes it possible to bridge a gap between
colonic disease, genetics and the ability to detect initiating
or promoting factors in ulcerative colitis and colon cancer.

Cytoplasmic oxidases and reductases
Cytochrome P-450 are a superfamily of haem containing
mono-oxygenases8 acting in the metabolism of foreign
compounds, as well as synthesis of steroids and bile
components. The P-450 superfamily of enzymes is
composed of families and subfamilies of enzymes based on
amino acid diVerences. P-450 are designated by CYP fol-
lowed by a number designating the family (1–27) and a

letter for the subfamily (A–C). Subfamilies may occur in
one or two forms.9 10

The activity and expression of cytochrome P-450 in
human colonocytes is generally low.10–12 The low levels of
cytochrome P-450 found in human colonocytes have been
attributed to methodological diYculties, but observations
in the rat suggest that colonic P-450 activity is equivalent to
that in the liver.13

The activity of CYP1A2 is directed by substrates such as
caVeine14 and ethanol, but certain cytochrome P-450 con-
centrations are greater in human adenocarcinomas,15 lead-
ing to the proposal that “activated” mono-oxygenases can
convert pro-carcinogens to carcinogens16; however, other
studies17 found low levels of CYP1A1, CYP2B1 in colon
cancer. Correlation of mutations of CYP1A1, normally
active against polycyclic aromatic hydrocarbons acting on
colonocytes, have been found in colorectal cancers of Japa-
nese and Hawaiians but not Caucasians.18 These mutations
make colonocytes vulnerable to the carcinogenic activity of
polycyclic aromatic hydrocarbons. In general, polymorphic
phenotypes of the oxidation of various drugs by cyto-
chrome P-450 have been established,8 but no relation was
found in patients with colon cancer.

Oxidant damage control
Reactive oxygen metabolites have been implicated in the
development of radiation colitis and ulcerative colitis, yet
defences against such radicals are strongly present in
colonocytes.19 20 The oxidant defence enzymes superoxide
dismutase, catalase and glutathione peroxidase, are mainly
present in colonocytes rather than in submucosal
structures.6 19 Distribution along the length of the gastroin-
testinal tract is variable, but colonic levels are lower than
those found in the stomach.20 Colonocytes seem to have
adequate control against oxidants such as tertiary butyl
hydroperoxide with lesser eVect against oxidants such as
menadione.21 In ulcerative colitis antioxidant enzymes such
as catalase and glutathione peroxidase are not significantly
impaired22 despite the imputation of oxygen free radicals as
damaging agents.

Glutathione: redox control and transfer reactions
The eVect of cellular and circulating glutathione against
oxidants is considerable and plays an important role in
redox control. The concentrations of glutathione in human
colonocytes23 24 are roughly half those found in the liver.
Both transport into colonocytes and synthesis of
glutathione25 26 occurs in colonocytes where levels can be
diminished by paracetamol24 or specific inhibitors such as a
buthionine sulphoxime.25 Inter-individual variation in glu-
tathione concentrations in the colonic mucosa can be
16-fold,27 with similar variability found for glutathione per-
oxidase, which is involved in redox control.28 Genetic
factors probably account for such variability.
In animals, bodily depletion of glutathione leads to

colitis25 and low mucosal concentrations of glutathione
have been found in quiescent and active ulcerative colitis,29

suggesting that redox control by glutathione is impaired in
colonocytes in this disease.
Through the action of glutathione transferases (á, µ and

ð), glutathione undergoes transfer to electrophilic substrates

TABLE 1 Detoxification and biotransformation reactions found in human
colonocytes

Action Enzyme Substrate/cofactor

Phase I
Oxidation Cytochrome P-450 O2

Hydroxylation
Sulphoxidation
Dealkylation
Azoreduction Cytochrome P-450 reductase H+

Nitroreduction
Co-oxidation Peroxidases H2O2

Catalases
Hydrolysis Esterases H2O

Epoxide hydrolases
Hydration Carbonic anhydrase CO2 + H2O

Phase II
Sulphation Sulphotransferases PAPS + ATP
Glucuronidation Glucuronyl transferase UDP-GA + ATP
Acetylation Acetyl transferase Acetyl-CoA + ATP
Methylation Methyl transferase SAM + ATP
Glutathione
conjugation Glutathione transferase Glutathione + ATP
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such as benzyl chloride or diethyl maleate, resulting in solu-
ble complexes that are more hydrophilic and less cytotoxic.
As a result of the hypothesis that chemical selection
processes can cause overexpression of detoxification en-
zymes, glutathione transferase activity has been measured in
the human colon,22 30 in both health and disease. High
activities of glutathione transferases (GST ð) have been
found in colon cancer,31 32 which is in support of the hypoth-
esis. A correlation in levels of GST (á, µ, and ð) between
colonic mucosa and circulating lymphocytes has been
found,33 enabling the detection of cancer prone subjects.
Lowered glutathione transferase activity has been observed
in ulcerative colitis,22 34 particularly in early onset disease and
more severe forms of colitis. The importance of these obser-
vations has yet to be evaluated, but proposals are that failure
of detoxification may be seen as a potential factor in the
development of colitis.

Acetylation
N-acetylation in colonocytes is implicated in the biotrans-
formation of chemical agents such as arylamine to
carcinogens35 36 or inactivation (detoxification) of therapeu-
tic agents, such as isoniazid, hydralazine, 4-aminosalicylic
acid (ASA)37 and 5-aminosalicylic acid.38 Acetylation of
drugs masks functional chemical groups and renders the
drugs less water soluble. Acetylation is recognised in two
genetic phenotypes in terms of slow and fast acetylators.39

In humans there are two N-acetyl transferase genes
(NAT1, NAT2) located on chromosome 8. NAT1 has a
monomorphic pattern and NAT2 polymorphic activity,
which is mainly found in liver.40

The N-acetyl transferase activity in human colonocytes41

is as high as in the liver. Previous studies associating NAT
genes in colonocytes with colorectal cancer had only shown
a slightly increased odds ratio of 1.29 in association with
colonic adenomas42 43 though a combination of CYPIA2
and NAT2 have a higher odds ratio related to potential
mutagen transformation in colonic epithelial cells.44 The
presence of a fast acetylator phenotype in colonocytes in
conjunction with high meat intake seems to predispose to
colonic carcinogenesis.36 39

In ulcerative colitis acetylation of 5-ASA is
prominent,45 46 yet acetylation of 5-ASA does not produce
a therapeutic gain.38 Acetylation renders 5-ASA less water
soluble and diminishes uptake by colonocytes.47 Acetyla-
tion of 5-ASA by colonocytes is biochemically preserved as
the reaction proceeds even when mitochondrial oxidation
has been reduced by more than 75%.48 The bacterial amine
content of the colonic lumen is high and presumably
acetylation of amines protects against their entry into the
circulation and thereby potential adverse reactions on
organ metabolism.

Sulphation and sulphotransferases
Sulphotransferases in epithelial cells require ATP and
“activated sulphate” for sulphation of bile salts, mucopoly-
saccharides, catecholamines, phenols, steroids, and xenobi-
otics, in the process of which they alter the activity or func-
tion of each agent. Sulphotransferases for steroids49 and
bile salts50 51 are not found in mammalian colonocytes;
however, phenols, such as napthol or paracetamol,52 53

catecholamines,54 and mucin55 are extensively sulphated in
human colonocytes. Sulphation in colonocytes is six to
eight times greater than glucuronidation of phenols in
human colonocytes52 53 and there is “compartmentalisa-
tion” of sulphation depending upon luminal or contra-
luminal application of xenobiotics.56

In ulcerative colitis sulphation of phenols, whether
measured by dialysis in vivo57 or in vitro with isolated
cells,58 is significantly diminished. Such impairment could

result from diminished formation of activated sulphate,
diminished sulphotransferase activity or diminished supply
of ATP. The latter seems to be the most likely explanation
that would lead to diminished formation of activated
sulphate, which also depends upon the availability of ATP.
Diminished phenol detoxification may lead to continuing
damage to colonocytes and perpetuation of the disease
process.
Sulphation of mucin is diminished in ulcerative

colitis59 60 and colon cancer.61 62 Both biochemical and
cytochemical evidence63 reveal significantly reduced ability
of colonocytes to sulphate mucin in colitis. The activity of
sulphotransferases has been measured in the human
colon6 61 in the cancerous state, but not in ulcerative colitis.
Sulphation of mucin61 and phenols52 are also diminished in
cancer tissue. The mechanisms of diminished sulphation,
respectively, in ulcerative colitis and colon cancer have not
been compared further. Colonic sulphotransferases have
the ability to bioactivate potential harmful agents leading
to carcinogen formation.64 Both genetic and biochemical
factors of either over-regulation or under-regulation of
enzymes in colonocytes seem to be part of the disease
process in colon cancer and ulcerative colitis, but
biochemical details are lacking.

Methylation and methyltransferases
Methyltransferases subserve detoxification of xenobiotics
and a number of cellular synthetic functions. Methylation
depends upon O-N- and S-methyltransferases,65 all of
which require the high energy cofactor S-adenosyl-
methionine. The function of DNA methylation66 and
methylation of phospholipids in membranes67 play a part in
tumorigenesis and colonic absorption68 in roles other than
detoxification: these physiological functions are not
discussed further.
The S-methyltransferases in colonocytes, which sub-

serve detoxification processes, are of two functional types:
those that methylate aromatic or heterocyclic sulphydryls,
such as mercaptopurine (thiopurine methyltransferase,
TPMT),69 and those that methylate aliphatic sulphydryls,
such as mercaptopropionic acid or potassium sulphide
(thiol-methyltransferase, TMT).70 Of all tissues in animals,
TMT activity is highest in the colon, exceeding values in
the liver with an aboral change between stomach and
colon.71 72 In humans, however, TMT activity, although
high in the large intestine, does not exceed values in the
liver.73 74 A large number of sulphur containing xenobiotics
are acted upon by TMTs.75

The activity of TMT in red blood cells is diminished in
Parkinson’s disease76 and rheumatoid arthritis,77 in contrast
with erythrocyte values of TMT activity in ulcerative coli-
tis which are very high compared with control cases.78

Colonocyte values of TMT activity in ulcerative colitis are
unknown, but healthy colonocytes show a 10-fold variation
in activity.79 As sulphides are toxic to colonocytes,80 the
activity of TMT in ulcerative colitis is an important factor
in maintaining epithelial integrity. Distinction between
erythrocyte, colonocyte and inflammatory cell activity of
TMT in the colonic mucosa is important and needs to be
considered in the disease process of ulcerative colitis. The
concentration of the high energy cofactor S-adenosyl
methionine, needed for TMT activity in colonocytes, is
reduced in ulcerative colitis,81 suggesting a failure of capac-
ity to detoxify sulphide by methylation. DNA hypometh-
ylation has also been observed in ulcerative colitis.82

Variability of colonic TMT activity suggests a strong
genetic control mechanism for this enzyme—genetic poly-
morphism for TMT activity in red blood cells has already
been established.83–85 Apart from genetic factors, competition
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between N-methylation and S-methylation in colonocytes
needs to be evaluated, particularly in colon cancer and
ulcerative colitis.

Hydrogen ion and pH control
Partially to protect against organic acid production by bac-
teria, bicarbonate secretion by colonocytes is high86 87 and
regulated by mucosal CO2 concentrations that depend on
cell metabolism or general respiratory control. Hydration
of CO2 is determined by carbonic anhydrase found in api-
cal epithelial cells of the entire colon,88 89 but with greater
activity in the proximal colon.90 Bicarbonate secretion is
closely linked with absorption of sodium and chloride.91 92

In ulcerative colitis luminal acidification is associated
with diminished bicarbonate secretion,92 93 either due to
diminished metabolic supply of CO2

94 or diminished
carbonic anhydrase activity.95 None of the established
metabolic inhibitors of carbonic anhydrase96 are known to
induce colitis, but most animal models of experimental
colitis produced by acetic acid,97 propionic acid,98 TNBS,99

or hydrochloric acid100 require extreme acidic conditions to
damage colonocytes. Certain volatile sulphur compounds
which may occur in the colon, may act on carbonic
anhydrase101 to raise the intracellular concentration of
hydrogen sulphide. The role of pH control and the place of
carbonic anhydrase for detoxification in the colon deserves
further investigation, particularly with regard to ulcerative
colitis.

Conclusions
Many avenues of investigation indicate that colonic epithe-
lial cells have diverse mechanisms to detoxify luminal
agents of dietary, bacterial or fermentative origin. Colono-
cytes are equal to hepatocytes in their capacity to carry out
detoxification processes or transformation of chemical
agents. The failure of detoxification in ulcerative colitis and
exaggerated biotransformation in colon cancer suggest dis-
ease mechanisms worthy of further exploration.
Even though the pharmacological substances mentioned

earlier are foreign to the colon, experimentation has
revealed a substantial genetic diversity in the capacity of
colonocytes to detoxify these agents. Pharmacogenetic
findings with regard to colonic mucosal metabolism may,
in the future, unravel disease pathways, particularly in
colonic carcinogenesis and ulcerative colitis.
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