Bioinformation

$$\hat{H}t_{j} = \frac{1}{\hat{H}t_{sum}} exp \left(\frac{-\left(x_{j} - \overline{x}\right)^{2}}{2\sigma_{x}^{2}} \right) exp \left(\frac{-\left(y_{j} - \overline{y}\right)^{2}}{2\sigma_{y}^{2}} \right) exp \left(\frac{-\left(z_{j} - \overline{z}\right)^{2}}{2\sigma_{z}^{2}} \right)$$
(Equation 1)

where: $\hat{H}t_j$ denotes the hydrophobicity for j-th grid point $\left(x_j,y_j,z_j\right)$, the $\left(\overline{x},\overline{y},\overline{z}\right)$ - the origin of coordinate system $\left(0,0,0\right)$ and σ_x , σ_y , σ_z - the ellipsoid size ($\frac{1}{3}$ of the maximum length along each axis, respectively). The coefficient $\hat{H}t_{sum}$ (sum of hydrophobicity values attributed to all grid points) makes the $\hat{H}t_j$ standardized (the sum of $\hat{H}t_j$ over all grid pints equal to 1.0).