Bioinformation

$$\hat{H}o_{j} = \frac{1}{\hat{H}o_{sum}} \sum_{i=1}^{N} H_{i}^{r} \left\{ \left[1 - \frac{1}{2} \left(7 \left(\frac{r_{ij}}{c} \right)^{2} - 9 \left(\frac{r_{ij}}{c} \right)^{4} + 5 \left(\frac{r_{ij}}{c} \right)^{6} - \left(\frac{r_{ij}}{c} \right)^{8} \right) \right] \text{ for } r_{ij} \le c \text{ (Equation 2)}$$

where $\hat{H}o_j$ - the empirical hydrophobicity attributed to *j*-th grid point being the result of hydrophobic interaction of

side chains of individual \hat{H}_{i}^{r} hydrophobicity. \hat{Ho}_{sum} - sum of all grid points hydrophobicity, which makes the distribution of empirical hydrophobicity standardized. The r_{ij} is the distance between *i*-th effective atoms and *j*-th grid point characterized by zero hydrophobicity. Each grid point collects the observed hydrophobicity \hat{Ho}_{j} from effective atoms localized closer than 9Å (cut-off distance for hydrophobic interaction according to Levitt [11]). More details concerning the presented model can be found in recently published papers. [8, 9, 10]