
Appendix: Bayesian rationale and mathematical

formulations

Uncertainty is unavoidable in any statistical modelling due to finite sets of samples

and random noise in measurements. Bayesian probability theory offers an elegant

and consistent way to handle this lack of absolute confidence by representing the

experimenter’s uncertainty explicitly in the form of probability distributions. The

inference process begins at the description of what would be observed if the data

were generated by the model at hand, that is, the likelihood of data is computed

given a certain model with given parameters. Since we are really interested in the

parameter values, the Bayes’ rule is then used to express the probability distribu-

tions of the parameters after combining the data with any prior beliefs of what the

parameters might be. Note that the prior knowledge is expressed by a distribution,

hence the posterior beliefs of the parameter values are communicated by another

probability distribution, in contrast to the point estimates that are necessary in

hypothesis testing.

Marginalisation of posterior distributions is another benefit of the Bayesian ap-

proach. The uncertainty about the unknown parameters is usually expressed by

joint probabilities, but by integrating the less relevant parameters away, attention

can be focused on the interesting aspects of the model. From a technical point

of view, closed-form integrals are seldom possible for complex models and var-

ious approximation schemes must be employed. A popular choice is to employ

Markov chain Monte Carlo (MCMC) methods to obtain samples from the poste-

rior distribution and to use these samples in estimating marginal probabilities.

The mathematical model definition consists of several distinct modules, all con-



nected through the Bayes’ rule. Suppose X (i) is a vector of the spectral intensities

measured for the individual i . Similarly, yi denotes the non-spectroscopic mea-

surement that is the target of modelling with respect to the spectrum X (i). Based

on existing spectroscopic knowledge, we assume that the information in X on

the target variable y is concentrated on an unknown number of distinct spectral

regions. On the other hand, the number of raw data points is large compared to

the number of individuals and the adjacent spectral points are strongly correlated.

These characteristics suggest that a kernel parameterisation is a suitable choice

to represent the complex but redundant data efficiently. A kernel is defined as an

instance of the Gaussian density function (vector of probabilities) with a given

centre and width. The parameterisation is formed by computing the dot product

between one such instance and the vector X (i). This captures the local sum of

intensities for a particular spectral region, denoted by φ j(X(i), m j , sj), where m j

and sj are the centre and width of the kernel j , respectively. In practise, the Gaus-

sian function is truncated beyond three standard deviations since the contribution

is negligible after that. Other kernel functions with wider tails could be used, but

the resonance overlaps in the spectra suggest that little useful information can be

extracted from the kernel tails.

After the non-linear parameterisation, the k kernel outputs φ are connected to the

target variable y by a linear regression model, written as

µi = w0 X̄(i) +

k∑

j=1

wjφj (X(i), m j , sj),

which corresponds to assuming that the clinical measurement is related in an ad-

ditive fashion to one or more metabolite resonances that can be detected by 1H

NMR of the biofluid. The term w0 X̄(i), where X̄(i) is the mean intensity, is added



to include very wide biochemical effects, if any exist.

Obviously, the clinical measurements have errors from unspecified causes so a

residual model is needed to handle the random noise. Outliers are common in

this type of data sets and, evidently, a robust residual model is preferred, hence

the Student’s t-distribution with unknown degrees of freedom was chosen. The

t-distribution can be represented by a mixture of Gaussians, defined as

yi ∼ N(µi , Vi)

Vi ∼ Inv-χ2(ν, σ 2),

where Vi is the variance for the i th observation, and ν and σ 2 are parameters for

the prior of Vi . To improve posterior sampling, the above can be further expanded

to

yi ∼ N(µi , α2Ui )

Ui ∼ Inv-χ2(ν, τ 2),

where α2 is an additional parameter that allows jumps in common direction for all

Vi .

After the model structure is established, the next important task is to define the

prior distributions for the parameters. The mathematical formulation allows fast

MCMC sampling from each conditional distribution in turn, and thus the partic-

ular sampler for each parameter is described. The likelihood parameters τ 2 and

ν have the uninformative priors p(τ 2) ∝ 1/τ 2 and p(ν) ∝ 1/ν, respectively. In

addition, the Gibbs’ sampling steps for Ui , τ 2 and α2 are defined in [1] page 305

and ν is sampled by slice sampling, see [2] for instance. The weights w in the



regression model have a Gaussian prior, written as

wj ∼ N(0, σw).

The prediction results are not sensitive to the choice of the width σw of the weight

prior, but the marginal posterior for the number of kernels can be affected, which

is a well known problem for linear models (see [3] for example). Based on pre-

liminary sensitivity analysis, σ 2
w = 10 was selected. The conjugate Gaussian prior

ensures that there is no need to explicitly sample these weights, instead they are

integrated out analytically. This also reduces the dependencies in the joint poste-

rior, greatly improving the speed of overall sampling. Equations for computing

marginalized likelihood, and expectation and variance of µi can be obtained, for

example, from [3].

It would be unjustified to prefer any spectral locations beforehand, so a uniform

prior was chosen for the kernel centres, defined as

m j ∼ Unif(1, mmax).

Certain widths, on the other hand, can be preferred based on spectroscopic knowl-

edge and practical arguments. Very small widths would be very unlikely from a

molecular perspective and thus the informative Inv-χ 2 prior was chosen, written

as

sj ∼ Inv-χ2(1, σs),

where σs = 4 (Hz). The kernel parameters m j and sj are sampled one at a time by

slice sampling and, together with the model structure, this promotes quick mixing



with respect to the conditional distributions. The number of kernels should not be

too strictly constrained, but slightly favoring smaller numbers will guard against

useless kernels that might be included in a saturated linear regression. For this

reason, a geometric prior was chosen, defined as

p(k) ∝ 0.9k .

Kernel number is sampled using a reversible jump MCMC algorithm from [4].

When adding a new kernel, the corresponding prior distributions are used as a

proposal distributions for the kernel parameters.

The analysis software was implemented in the Matlab programming environment

(The MathWorks Inc., Natick, Massachusetts, USA) with the MCMCStuff tool-

box (http://www.lce.hut.fi/research/mm/mcmcstuff/).
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