
(Supplement 1) Proof of the theorem 
 
We will outline the proof of the theorem for the case of n metabolite measurements x = (x1, ..., xn) and a single 
hyperplane defined by the equation 
(S1)  βαα =++ nn xx ...11 . 
 
However, the proof for a general surface defined by N equations exactly goes along the lines of the hyperplane 
case. It essentially leans on the orthogonality condition that leads to a decoupling of the terms that come from the 
different hyperplane equations (S1). The likelihood of the n metabolite concentrations to lie on a hyperplane is 
given by the convolution of the corresponding error distribution with the density that describes the surface,   
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Here ρ is the density describing the hyperplane and N a suitable normalization constant. We will take advantage 
of the trick to smear out the delta-distribution-like density to a family of Gauss functions, 
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This leads to significant simplifications: The integration can be extended over the whole n-dimensional space 
and the projection on the hyperplane can be done after integration, namely by letting the variance of the Gauss 
functions approach zero. In what follows we do not need to care about several factors that appear during the 
manipulations. We absorb them into the normalization constant which can be restored by the condition 
 
(S4)  1)|( =ρxp      for αtx = β 
at the end of the calculations. Let S be a square root of the positive definite, symmetric matrix Σ. As first step 
towards the calculation of the integral (S5) we perform a change of variables to )(1 xxSy −′= −  resulting in 
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Next, we put in the representation for the density and obtain 
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wherein 
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Execution of the Gaussian integration yields the result 
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To evaluate expression (S8), we consider the vector a:=Sα and the matrix aat  that projects on a straight line in 
direction of a. We obtain A = I +ε2aat, det A = 1+ε -2ata, the eigenvector relation Aa = (1+ε -2ata)a, and atA-1a = 
ata (1+ε -2ata)-1. With these results in hand we are in position to evaluate the exponent of (S8), 
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Finally, we reinstate the expression for the exponent in (S8) and execute the limit. By taking into account the 
normalization condition we obtain the final result  
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