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Consider testing m hypothesis pairs ),,( 0 Aii HH  i = 1, . . . ,m. In most applications of microarray gene expression 
analyses, m is typically on the order of 105−106. Suppose m P values, P1, . . . ,Pm, one for each hypothesis pair, are 
calculated, and a decision on whether to reject iH 0  is to be made. Let 0m be the number of true null hypotheses, and let 

01 : mmm −= be the number of true alternative hypotheses. The outcome of testing these m hypotheses can be tabulated 
as in Table 1. [6] 
 
Here V is the number of null hypotheses erroneously rejected, S is the number of alternative hypotheses correctly captured, 
and R is the total number of rejections. Conceptually these quantities are random variables. Clearly only m is known and 
only R is observable. An important parameter is m0, or equivalently, the null proportion π0 := m0/m. This parameter will 
appear frequently in the subsequent sections, and its estimation will be discussed in Section 4. 
 
Multiple hypotheses tests and related error measurements can be well understood as an estimation problem, which is 
described below in the frequentist framework. First for two probability distributions P1 and P2 on R with respective 
cumulative distribution function (cdf) F1(·) and F2(·), P1 is said stochastically less than P2, written as P1<st P2, if F1(t) ≥ 
F2(t) for all t∈R. Next define the parameter Θ = [θ1,…, θm] as  θi = 1 if HAi is true, and  θi = 0 if H0i is true (i = 1, . . . ,m). 
The data consist of the P values {P1,….,Pm}, and under the assumption that each test is exact and unbiased, the population is 
described by the following probability model: 

Pi ~Pi, θi 
Pi,0 is U(0,1), and Pi,1<st U(0,1);                    (1) 

each distribution Pi,l has a continuously differentiable cdf Fi(⋅),  i = 1, . . .,m. The P values are dependent in general and have 
a joint distribution on [0, 1]m. The marginal cdf of Pi can be written as Gi(t) = (1 − θi)t + θi Fi(t). Note Fi(t) ≥ t and Gi(t) ≥ t 
for t ∈ [0, 1]. 
 

A test procedure is an estimator of Θ : Θ̂ = Θ̂ (P1, . . . ,Pm) = [ 1̂θ , . . . , mθ̂ ] ∈ {0, 1}m, where iθ̂ = 1 indicates rejecting H0i 
in favor of HAi, i = 1, . . .,m. With this notation, the random variables in Table 1 can be expressed as   
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A natural and perhaps the simplest procedure is the “hard-thresholding” (HT) estimator Θ̂ = Θ̂ (α) defined as  

HT(α) : iθ̂  = 1 iff Pi ≤ α ,           (3)                                                       
Where α ∈ (0, 1) is a significance threshold common to all tests. Clearly for this procedure the distributions of the random 
variables V, S, and R all depend on α. 
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2.1 False discovery rate 
At least one family-wise type-I error is committed if V >0, and procedures for multiple hypothesis testing have traditionally 
been produced for solely controlling the family-wise type-I error probability Pr(V > 0). It is well-known that such 
procedures are often lack of statistical power. In an effort to develop more powerful procedures, [6] approached the multiple 
testing problem from a different perspective and introduced the concept of false discovery rate (FDR), which is, loosely 
speaking, the expected value of the ratio V/R. Rigorously, the FDR is defined as [ ] ).0Pr(0| >>= RRRVEFDR  
Note that if no alternative hypothesis is true, i.e., m0 = m, then V = R and E[V/R|R>0] = 1 with probability one; therefore 
FDR = Pr(V >0), the family-wise type-I error probability. 
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Benjamini and Hochberg (1995) aim at determining an α based on the P values so that the FDR of the HT(α) procedure (3) 
is controlled below a pre-specified level. [7] 
 
2.2 Positive FDR and q-value 
For more discovery-oriented applications the FDR level is often not specified a priori, but rather determined after one sees 
the data (P values), and it is often determined in a way allowing for some “discovery” (rejecting one or more null 
hypotheses). Hence the positive false discovery rate (pFDR; [7, 8], defined as pFDR := E[V/R|R>0], is a more appropriate 
error measurement. Storey (2002) develops estimators of FDR and pFDR and introduces the concept of q-value in a 
Bayesian framework. [7] Assuming that each θi is a Bernoulli random variable with Pr(θi = 1) = Pr(H0i) = 1 − π0  (prior 
probability), all test statistics have the same null distribution, all test statistics have the same alternative distribution, and all 
tests are performed with identical rejection regions [7], the pFDR of the HT(α) procedure is pFDR(α) =π0α/Pr(P≤ α), where 
P is the random P value resulted from any test. Storey (2002) uses the phrase “identical tests” to describe the set of 
assumptions. [7] 
 
To understand the q-value, first consider the P value. Suppose there are m two-sample Student-t tests with a common 
degrees of freedom d and observed statistics t1, . . ., tm. For a single test, say the ith test, the P value is 

( ),Pr idHi tTP
oi

≥= where Td is a random variable following the t distribution with d degrees freedom. If a threshold t 

*> 0 is applied to make the decision whether to reject the null hypothesis, i.e., reject the ith null if and only if |ti | ≥ t* or 
equivalently, |ti| is in the rejection region [t*,∞), then the P value at |ti| is Pi = inft*≥|ti|{PrH0i (|Td| ≥ t*)}, that is, the minimum 
probability over all the rejection regions less stringent than |ti| under the ith null hypothesis. Note the P value is defined for a 
single test. The q-value is defined for all m tests as a whole, using pFDR in lieu of the probability distribution under the null 
hypothesis. Storey (2002) gives a general definition of the q-value [7]; for the HT(α) procedure (3) the q-value at α is 
defined as q(α) := infγ≥α{pFDR(γ)}, and q(α) = infγ≥α{π0γ/Pr(P≤γ)} under the Bayesian model. So the q-value at α is the 
minimum pFDR over all the rejection regions less stringent than α. Thus the q-value is an error measurement related to the 
positive FDR, but it is neither the pFDR nor the FDR. The q-value can only be meaningfully interpreted in the Bayesian 
framework. [7] Storey (2003) shows that in the Bayesian framework the q-value q(α) can be interpreted as the posterior 
probability of the null hypothesis given  P ≤ α. [9] Estimation of the pFDR and q-value will be reviewed in Section 5.1. 
 
2.3 Erroneous rejection ratio 
As discussed by Benjamini and Hochberg (1995, 2000), the FDR criterion has many desirable properties not possessed by 
other intuitive alternative criteria for multiple tests. [6, 10] However, methodological and theoretical developments and 
extensions of the FDR approach require to assume certain weak dependence conditions [9, 11, 12] or positive dependence 
structure [13] among the test statistics. These conditions may be too strong for genome-wide tests of gene expression–
phenotype associations, in which a substantial proportion of the tests can be strongly dependent. [14] In such applications it 
may not be even reasonable to assume that the tests of the true null hypotheses are independent, an assumption often used in 
FDR research. Without these assumptions however, the FDR becomes difficult to handle analytically. Cheng (2006) defines 
an analytically simple error measurement in the same spirit of FDR [15], called the erroneous rejection ratio (ERR): With 
notation given in Equation (2), 
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Just like FDR, when all null hypotheses are true )0)(Pr( >Θ= RERR , which is the family-wise type-I error 

probability because now )ˆ()ˆ( Θ=ΘΘ RV  with probability one. An advantage of ERR is that it can be handled under 
arbitrary dependent relationships among the tests; this will be elaborated later. Denote by V (α) and R(α) respectively the V 
and R random variables in Table 1 and by ERR(α) the ERR of the HT(α) procedure. Then 
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Let FDR(α) :=E [V (α) / R(α)|R(α) >0] Pr(R(α) > 0). ERR(α) is essentially FDR(α). Under the hierarchical (or random effect) 
model employed in several papers [7, 8, 9, 12, 16], FDR(α) = ERR(α) for all α ∈ (0, 1], following from Lemma 2.1 of 
Genovese and Wasserman (2004). [12] More generally ERR/FDR = {E[V ]/ E[R]}/E[V/R|R> 0] provided Pr(R > 0) > 0. 
Asymptotically as m → ∞, if Pr(R > 0) →1 then E [V/R|R> 0] ≅ E [V/R]; if furthermore  
E[V/R] ≅ E[V ]/E[R], then ERR / FDR → 1. The last condition is approximately satisfied for the HT(α) procedure if α is 
close to zero [8], which is often true in microarray applications. 
 
Similar to pFDR is the positive ERR, pERR := E[V ] / E[R]. It is well-defined provided Pr(R > 0) > 0. The relationship 
between pERR and pFDR is the same as that between ERR and FDR described above.  
 
It is instructive to examine each component of ERR(α). Let P1:m be the smallest P value. First, under model (1) 
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Note the functions Fm(·) and Hm (·) both are cdf’s with Fm(0) = Hm(0) = 0 and Fm (1) = Hm (1) = 1. Fm(·) is the average of all 
P value individual (marginal) cdf’s. It describes the ensemble behavior of all P values, hence will be called the ensemble P 
value cdf. Hm(·) is the average of the P value marginal cdf’s corresponding to the true alternative hypotheses, and describes 
the ensemble behavior of the P values corresponding to the true alternative hypotheses; hence will be called the ensemble P 
value alternative cdf. Next, these functions are linked to the actual data (i.e., observed P values) by the Empirical 
Distribution Function (EDF) of the P values defined as ∑ ∈≤= =

− ttPImtF i
m
im ),(:)(~

1
1 R. Simple calculations show that 

under model (1)  
 

].1,0[),()1()()](~[ 00 ∈−+== ttHttFtFE mmm ππ      (7) 
 
This link provides opportunities to develop estimators of the FDR and data-driven significance criteria which will be 
reviewed in Sections 4, 5, and 6. 
 
The false positive error behavior of a given multiple test procedure can be investigated in terms of either FDR (pFDR) or 
ERR (pERR). The ratio pERR(α) = E[V (α)] / E[R(α)] can be handled easily under arbitrary dependence among the tests 
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because E[V ] and E[R] are simply means of sums of indicator random variables. Cheng (2006) [15] develops a data-driven 
significance threshold criterion to determine an α for the hard-thresholding HT(α) procedure (3) so that its ERR and pERR 
are guaranteed to diminish asymptotically as the number of tests m goes to infinity, for arbitrarily dependent tests; see 
Section 6. 
 
2.4 Other error measurements 
The expected number of type-II errors (false negatives) is E[m1 − S]. For the HT(α) procedure, under model (1) E[m1 − S] = 

m1 −∑ =
m
i 1 I (θi = 1)Gi(α) = m1 − m1Hm(α). The false negative proportion is m−1E[m1 − S] = (1 − π0) (1 − Hm(α)). This 

quantity will be further considered in Section 6.2. 
 
Symmetric to FDR, the false non-discovery rate (FNR) can be defined as FNR = E[(m1 − S) / (m − R) | R < m]. [11] 
 
Lehmann and Ramano (2005) introduced the generalized family-wise error rate (gFWER) which is Pr(V >k) for a 
specified k.  [17] The traditional FWER corresponds to k = 0. In a series of papers van der Laan and colleagues develop 
resampling and augmentation procedures of controlling gFWER and the probability Pr(V/R > k) for a specified k. 


