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Recall from Equation (8) that the EDF of the P values mF~ (t) has expected value E[ mF~ (t)]=Fm(t) for every t; that is, mF~ (·) 

is an unbiased estimator of the P value ensemble cdf Fm(·). Cheng et al. (2004) [24] observe that if the tests iθ̂ (i = 1, . . .,m) 

are not too much correlated asymptotically in the sense ∑=
=

ji ji moCov )()ˆ,ˆ( 2θθ  as m →∞, mF~ (·) is 

“asymptotically consistent” for Fm(·) in the sense 0)()(~
pmm tFtF →− for every t ∈ IR. These results provide heuristics 

for the estimation of π0, the estimation of FDR, and data-adaptive determination of α for the HT(α) procedure. Estimation of 
π0 is reviewed in this section. 
 
As noted in the previous sections, the proportion of the true null hypotheses π0 is an important parameter in FDR-related 
procedures. Consider first the P value ensemble cdf Fm(·). Because for any t ∈ (0, 1) π0 = [Hm(t) −Fm(t)] / [Hm(t)−t], a 
plausible estimator of π0 is 
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for properly chosen Λ and t0. The inverse function of Fm(·), defined as 

},)(:inf{:)(:)( 1 utFtuFuQ mmm ≥== − is the P value ensemble quantile function. The sample version is the empirical quantile 
function (EQF) defined as })(~:inf{:)(~:)( 1 uxFxuFuQ mmm ≥== − . Then  

π0 = [Hm(Qm(u))−u] / [Hm(Qm(u))−Qm(u)], for u ∈ (0, 1), and with Λ1 and u0 properly chosen, 
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plausible estimator. Many of the estimators take either of the above two basic representation with some modifications. 
 
Clearly it is necessary to have Λ1 ≥ u0 in order to have a meaningful estimator. Because Qm(u0) ≤ u0 by the stochastic order 
assumption [cf. (1)], choosing Λ1 too close to u0 will produce an estimator much biased downward. A heuristic is that if u0 
is so chosen that all P values corresponding to the alternative hypotheses concentrate in the interval [0, Qm(u0)] then 
Hm(Qm(u0)) = 1; thus setting Λ1 = 1. A similar heuristic leads to setting Λ= 1. 
 
4.1 Slope estimator 

Taking a graphical approach Schweder and Spjøtvoll (1982) [25] consider the slope from the point (λ, mF~  (λ)) to the point 

(1,1), and an estimator of m0 as 0m̂  = m(1 − mF~  (λ)) / (1 −λ) for a properly chosen λ; hence a corresponding estimator of 

π0 is 0π̂ (λ) = 0m̂ / m = (1 − mF~  (λ)) / (1 − λ). Storey’s (2002) [7] estimator is exactly this one. Additionally, Storey 

(2002) [7] observes that λ is a tuning parameter that dictates the bias and variance of the estimator, and proposes computing 

0π̂ on a grid of λ values, smoothing them by a spline function, and taking the smoothed 0π̂  at a λ close to 1, (e.g. 0.95) as 
the final estimator. Storey et al. (2003) [8] propose a bootstrap procedure to estimate the mean-squared error (MSE) and 
pick the λ that gives the minimal estimated MSE; a simulation study in Cheng (2006) [15] and investigation in Langaas et 
al. (2005) [26] show that this estimator tends to be biased downward. 
 
4.2 Quantile slope estimator  
Approaching to the problem from the quantile perspective Benjamini and Hochberg (2000) [10] propose 

}),1/()1(11min{ˆ :0 mPjmmm mj−−+++=  for a properly chosen j; hence 0π̂ = 0m̂ /m. The index j is 

determined by examining the slopes Si=(1-Pi:m)/(m+1-i),  i = 1, . . .,m, and is taken to be the smallest index such that  
Sj < Sj-1. Then 0m̂  = min {1+1 / Sj , m}. Cheng (2006) [15] shows that as m gets large the event {Sj < Sj-1} tends to occur 
early (i.e., at small j) with high probability; therefore the estimator tends to be increasingly conservative (i.e., biased 
upward) as the number of tests m increases. The conservativeness is also demonstrated by the simulation study in Cheng 
(2006). [15] 
 
4.3 Quantile slope estimator by quantile modeling 
Cheng (2006) [15] develops an improvement of Benjamini and Hochberg’s’ (2000) [10] estimator by considering a shape 
requirement on the P value ensemble quantile function Qm(·). Heuristically, the stochastic order requirement in model (1) 
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implies that Fm(·) is approximately concave and hence Qm(·) is approximately convex. When there is a substantial proportion 
of true null and true alternative hypotheses, there is a “bend point” τm ∈ (0, 1) such that Qm(·) assumes roughly a nonlinear 
shape on the interval [0, τm], primarily dictated by the distributions of the P values corresponding to the true alternative 
hypotheses, and Qm(·) is essentially linear on the interval [τm ,1], primarily dictated by the U(0, 1) distribution of the null P 
values. The estimation of π0 can benefit from properly capturing this shape characteristic using a model. Cheng (2006) [15] 
considers a two-piece function approximation (model) for Qm(·). In an interval [0, τm] Qm(u) is approximated by a 
polynomial of the form ηuγ + δu with  γ ≥ 1, η ≥1, and 0 ≤ δ ≤ 1; on the interval [τm ,1] it is approximated by a linear 
function β0+ β1u with β0 ≤ 0 and β1 ≥ 1. The two pieces are joint smoothly at τm by the constraints 

mmm τββδτητ γ
10 +=+  (continuity) and 1

1 βδηγτ γ =+−
m  (differentiability). For identifiability it is further 

required that γ = η = 1 and δ = 0 if and only if τm = 0. These parameters are determined by minimizing the integrated 
absolute difference (L1 distance) between Qm(u) and ),)(1())(0(:)( 10

* uuIuuuIuQ mmm ββτδητ γ +≤≤++≤≤=  subject to 

the above constraints. Cheng (2006) develops a procedure to estimate these parameters from the P value EQF ( )⋅mQ~ . The 

estimator of π0 is the reciprocal of the estimator of β1: .ˆ/1:ˆ 10 βπ =  
 
A simulation study by Cheng (2006) [15] indicate that in a reasonably wide range of scenarios this estimator is slightly 
biased upward (i.e., conservative); the upward bias is usually less than the downward bias of the bootstrap estimator of 
Storey et al. (2003), [8] and is much less than the upward bias of Benjamini and Hochberg (2000) [10] estimator. In this 
regard this quantile slope estimator outperforms the other two estimators, as well as in terms of the mean square error. 
 
4.4 Monotone convex and smooth density estimators 
Note that under model (1) the probability density function (pdf) of Fm(·), the P value ensemble pdf, is 

],1,0[),()1()(:)( 00 ∈−+== tthtF
dt
dtf mmm ππ  

where ),(:)( tH
dt
dth mm = the P value ensemble alternative pdf. Note π0 ≈ fm (1) if hm (1) ≈ 0; this is achievable under 

the heuristic that essentially all the P values corresponding to the true alternative hypotheses concentrate in an interval away 
from 1. Langaas et al. (2005) [26] consider estimating π0 by requiring Fm(·) be strictly concave and thus fm(·) be monotone 

and convex. They propose to estimate fm(·) by the nonparametric maximum likelihood estimator *ˆ
mf (·) under the constraint 

of monotonicity and convexity, and to estimate π0 by )1(ˆ:ˆ *
0 mf=π . The simulation study therein indicates this estimator 

performs very well in a range of scenarios. 
 
Cheng et al. (2004) [24] consider a spline function estimator ( )⋅mF̂ of ( )⋅mF . ( )⋅mF̂  is a B-spline function constructed by 

smoothing the P value EDF ( )⋅mF~ . The spline knots are placed in a way that gives little smoothing in the vicinity of 0 but a 

large amount of smoothing in the right tail. An estimator of fm(·) is the derivative function ]1,0[),(ˆ:)1(ˆ ∈= ttF
dt
df mm

. 

Then an estimator of π0 is given by ( )1ˆ:ˆ0 mf=π . The simulation study in Cheng et al. (2004) [24] indicate that this 

estimator is slightly upward biased (conservative) in a range of scenarios as long as the true π0 is not too close to 1. 
 
4.5 Mixture model estimators 
Allison et al. (2002) [27] and Pounds and Morris (2003) [28] describe methods that estimate the FDR via P value modeling. 
These methods also estimate π0. Allison et al. (2002) [27] describe a method that models the P values as arising from a 
mixture distribution with one U(0, 1) component and potentially several beta components. The model is fit by maximum 
likelihood estimation and the bootstrap is used to determine the number of beta components that are used in the model. 
Allison et al. (2002) [27] note that it is often unnecessary in practice to include more than one beta component in the model. 
Pounds and Morris (2003) [28] give a detailed description of the use of a specific model with one beta component. 
Assuming null p-values follow a U(0,1) distribution, Pounds and Morris (2003) [28] show that π0  must be less than or equal 
to the minimum of the ensemble P value pdf. Thus, they propose to estimate π0 by the minimum of the pdf of the mixture 
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model fit to the p-values. Allison et al. (2002) [27] estimate π0 by the mixing weight for the uniform component of the fitted 
model. It is theoretically possible that the mixing weight of the uniform component could be substantially smaller than the 
minimum of the fitted pdf. In this case, the mixing weight estimator understates the proportion of the fitted density that 
could be attributed to a uniform (0,1) distribution. 
 
4.6 Moment estimator 

Pounds and Cheng (2006) [29] describe a simple moment-based estimator of π0. Let ∑=
−=

m

i iPmP
1

1 . Assuming that 

E[Pi] ≥ 1/2 if θi = 0 (i.e., H0i is true), it follows that  E [ ]P ≥2π0. This observation motivates 0π̂ = min (1, 2 P ) as an 

estimator of π0. This estimator has several advantages over those described above. It is very simple to compute, and it does 
not rely on continuity or model assumptions for the P values. However, it is considerably more conservative than the other 
estimators when the assumptions of those estimators hold. 
 


