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Recall for Section 3.3 that Storey (2002) [7] considers estimating the FDR for a fixed P value cut-off α by  

(α):=
( )
( ) mR /}1,max{

ˆ0

α
αλπ

, where 0π̂ (λ) is an estimator of  π0 (See Section 4.1) and R(α) is the number of P values less 

than or equal to α. In term of the P value EDF,  
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. Storey et al. (2003) [8] show that this estimator is biased upward and asymptotically 

conservative in the sense that with probability 1 limm→∞ inft≥α { (t) −FDR(t)} ≥ 0 for each α > 0. Storey (2002) considers 
an estimator of the pFDR given by  
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 . [7] In term of the P value EDF,  
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Hence limα→0 p  (α) = limα→1 p  (α) = 0π̂ (λ) for any fixed m > 1, and in general p (α) is not monotone in α. 
Storey (2002) [7] establishes mean-squared error properties of this estimator and its asymptotic conservativeness that with 
probability 1, limm→∞ p  (α) ≥ pFDR(α). It not difficult to see that with the multiplier 1− (1− α)m in its denominator this 
estimator may tend to have large variance (thus be unstable) for small α. 
 
The “empirical” q-values are defined as iq̂  := q̂ (Pi:m) := minj≥i{p  (Pj:m)}, i = 1, . . . ,m. [7] Clearly mqq ˆˆ1 ≤⋅⋅⋅≤ . 

Storey et al. (2003) [8] consider the more general q-value estimator q̂ (α) := infs≥α{p (s)} for q(α) defined in Section 2.2, 
and show its conservativeness that ( ) ( ) 0}ˆ{inflim ≥−≥∞→ tqtqtm α

 with probability 1 for each α > 0 under a specific 
Bayesian model (see section 2.2) and certain ergodicity conditions. 
 
5.2 Smooth ensemble cdf and pdf estimator 

Cheng et al. (2004) [24] consider an estimator of the FDR of the HT(α) procedure (3) by 
)(ˆ
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= , where 0π̂  

and mF̂ (·) are respectively the estimators of π0  and the P value ensemble cdf Fm(·), derived from a spline smoothing of the 

P value EDF mF~ (·); see Section 4.4. Cheng et al. (2004) [24] consider using this estimator to provide an FDR estimate at a 

P value cut-off threshold α̂ generated by a data-driven significance criterion (see Section 6). Simulation results therein 
indicate that the estimator is able to provide a reasonably conservative (upward biased) FDR estimate at the data-driven 
significance threshold in a wide range of scenarios. 
 
Pounds and Cheng (2004) [30] propose an estimator of the P value ensemble pdf fm(·) by properly transforming and 

smoothing a histogram constructed from the spacings defined by the ordered P values. An estimator mf̂ (·) is constructed by 

back-transforming and normalizing the smooth function, an estimator of  π0  by  

0π̂  := min{ mf̂ (Pi), i =1, . . . ,m}, an estimator mF̂ (·) of Fm(·) by the trapezoid rule of integration applied to mf̂ (·), and an 
FDR estimator by plugging the estimators into the above formula. Simulation results therein indicate that this estimator 
performs well in estimating the cFDR (or pFDR). For estimating pFDR it is much more stable (i.e., having less variance) 
than Storey’s (2002) [7] estimator at the α values close to zero, which are often used in microarray applications. 
 
5.3 Mixture model estimator 
For the mixture models discussed in section 4.5, the FDR estimate is determined by substituting the fitted model’s  π0  
estimate and cdf into  π0α / Fm(α). For the specific model of Pounds and Morris (2003), [28] the FDR estimate 
monotonically increases as α increases. 
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5.4 Robust estimator 
As previously described, most of the available FDR estimation methods assume that Gi(t) = t when θi = 0 (i.e., H0i is true). 
Pounds and Cheng (2006) [29] noted that this critical assumption is violated by discrete P values and P values from testing 

one-sided hypotheses. In particular, any test iθ̂  that is one-sided or based on a discrete test statistic may have Gi(t) < t for 

some t when θi = 0. This violation can have severe and undesirable consequences for methods that estimate π0 as part of 
their calculations. Pounds and Cheng (2005, 2006) [31, 29] describe these consequences in greater detail. Thus, Pounds and 
Cheng (2006) [29] develop a robust FDR estimator. The robust FDR estimator is conservative provided that 

( ) 12/1Pr ≈≤P  and Gi(t) ≤ t for θi = 0, even when applied to one-sided tests or discrete P values. The method borrows 
ideas from least trimmed squares [32] and rank regression [33] to smooth raw FDR estimates obtained from the P value 
EDF. For one-sided tests, a folding transformation is used to make p-values essentially two-sided for purposes of estimating 
π0  and then other calculations are performed on the original one-sided p-values. 
 
5.5 Estimation of local FDR or empirical Bayes posterior 

With estimators 0π̂ and mf̂ (·), an estimator of the empirical Bayes posterior probability (EBP or local FDR) [16, 34] of the 

null hypothesis H0i conditional on Pi = pi  is given by 0π̂ / mf̂  (pi). Efron (2004) [34] advocates to estimate the null 
ensemble density function of the test statistics from the empirical distribution and cautions against the use of random 
permutations. In the P value domain, this means to estimate the P value ensemble distribution under the “grand null” 
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0 =∩= in lieu of assuming the U(0, 1) distribution as in model (1). In a similar spirit, Datta and Datta (2005) 

[35] proposed an empirical Bayes method that first transforms p-values using the quantile-function of the standard normal 
distribution and then apply kernel density estimation methods to the transformed P values to obtain an EBP. 
 


