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6.1 Profile information criteria

Abramovich et al. (2000) [36] consider theoretically thresholding estimators of a sequence of Normal distribution means,
where the threshold is determined by a lack of fit criterion (¥ distance) penalized by FDR. They show that the estimators are
asymptotically minimax. Regarding massive multiple tests as the estimation problem described in Section 2, Cheng et al.
(2004) [24] develop criteria to determine the significance threshold a for the HT(a) procedure (3). The profile information
(1,) criterion consists of a lack-of-fit term of the P value ensemble quantile function from U(0, 1) penalized by the expected
number of false discoveries under model (1). Empirically, the lack-of-fit term is  defined
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where Qm () is the P value EQF (cf. Section 4) and [x]. denotes the positive part of x, i.e., [x]. = max{x, 0}. So D(a)

measures how far are the P value sample quantiles below the diagonal line on the interval (0, a]. Empirically the profile
information criterion J, is given by

I,(a)=[D()] ™ +hm. 7oy m Aya,  ae (1)

Here m 77 o @ is an estimate of the expected number of false positives, A(m, 7T o) is a penalty factor, and [D(a)]’l

measures the deviation of the P values from the U(0, 1) distribution. The more concentrated are the P values towardzero, the

larger is [D()] and thus the smaller is[ D(& )]_1 ; therefore one minimizes [ » (ar) with respect to a. So the data-
driven “optimal” significance threshold is the d* that minimizes [ » (a); and the HT( d*) procedure rejects Hy if Pi

<a ' . Cheng (2006) [15] extends 1, by introducing the adaptive profile information (API) criterion based on the quantile
model Q. (u)=T10<u<t)(nu’ +du)+I(z, <u<l)B,+p,) (cf. Section 4.3). API is defined as
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Here the major modification is on the lack-of-fit term: the L* norm is replace by the L’ norm. Recall that y>1 is a parameter

reflecting how far the P value quantiles are below the U(0, 1) quantiles in the vicinity of zero. The L7 norm emphasis this
deviation and makes the criterion more adaptive to the P value behavior around zero. Cheng (2006) [15] considers an
approximation of the lack-of-fit term that simplifies both theoretical development and computation in practice, and proposes
a procedure to estimate the parameters in API. The data-driven optimal significance threshold & " is the ¢ that minimizes an
approximate API with estimated parameters in o' ().

A key issue is the choice of the penalty factor A. Cheng et al. (2004) [24] and Cheng (2006) [15] consider a few
conservative choices and show for my < 1 the pERR of the g7(4) procedure (3) diminishes to zero as m —oo regardless the

dependence among the P values; and for my, < 1 the ERR diminishes to zero as m—oo if the P values posses certain
dependence structure. The simulation studies therein indicate that these choices perform well when there is substantial
power to reject the false null hypothesis in a number of individual tests, and they tend to be conservative when the power is
low. Moreover, in a range of scenarios API moderately outperforms Z,.

6.2 Total error proportion

Pounds and Morris (2003) [28] observe that given a threshold o, the area under the P value density function can be
partitioned into four distinct regions corresponding to the four hypothesis testing outcomes resulted from the HT{(a)
procedure (3). More specifically, the area to the left of o corresponds to rejections and the area below 7, can be attributed to
the U(0, 1) distribution. Thus, assuming that the null distribution of the P values is U(0, 1), the area left of a and below
corresponds to Type I errors, the area left of a and above 7, corresponds to correct rejections, the area above m, and right of
a corresponds to Type II errors, and the area below 7, and right of o corresponds to correct non-rejections. In particular,
under model (1) the expected proportion of tests resulting in a Type I error is given by FP(a) = myo. Additionally, the
expected proportion of tests resulting in a Type II error is given by FN(a) = (1 — 7y) (1 — Hm(a)). The total error proportion
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is the sum TE(a) = FP(a) +FN(a), which is the expected proportion of tests resulting in a Type I or Type II error. Cheng et
al. (2004) [24] use the term “total error criterion” and Genovese and Wasserman (2002) [11] use the term “total
misclassification risk” to describe the total error proportion.

In practice, an estimate of the total error proportion can be used as a criterion to guide the selection of a. An estimate of
TE(a) can be obtained by substituting estimates for the terms in FP and FN. Then, the value of o that minimizes this TE
estimate can be easily determined. The TE estimators can be nonparametric [24] or parametric with the mixture models. [27,

28] Let & 75 be the a so obtained.

Using @, to declare significance has some useful operating characteristics. First, if the estimate of F.(), F m (t ) =1 for

all ¢ (indicating an all null case), then dTE = 0 (no rejections are made). Additionally, dTE corresponds to a 50%

empirical Bayes probability that the null hypothesis is true. [28]
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