

Supplementary Figure 1. The structure of L_8S_8 Rubisco. (A) Arrangement of the eight large (L, light and dark blue) and eight small (S, yellow and orange) subunits in the *Synechococcus* PCC6301 Rubisco hexadecamer viewed down the twofold and (B) fourfold axes (Protein Data Bank code 1RBL; [1]). (C) Stereo view of the positioning of the L subunit mutations Ala-8-Ser (pink), Met-259-Thr (red) and Phe-342-Ser (green) relative to the bound substrate intermediate analogue 2-carboxyarabinitol-P₂ (2CABP, orange) and key conserved residues in a CO₂-Mg²⁺ 'activated' (CO₂ carbamate moiety in grey, bound Mg²⁺ in yellow) active site that is formed at the interface between the C-terminal domain of one L (dark blue) and the N-terminal residues of its paired L (light blue). The distance from the closest carbon atom in each mutation to the Mg²⁺ is shown. The relative position of the active site to the structure in panel A is indicated by a

white circle. The mutated L residues are uniformly colored in each panel (Phe-342 is not a surface residue and is not visible in panel A or B). Residue numbering is relative to spinach Rubisco L.

 Newman, J. and Gutteridge, S. (1993) The X-ray structure of *Synechococcus* ribulose-bisphosphate carboxylase/oxygenase-activated quaternary complex at 2.2- Å resolution. J. Biol. Chem. **268**, 25876-25886

		266
		I
RAEFAKELGMPIIMHDFLT		
ΙT		
КT		Y
ΙT	v	I
т		
NQ		Y
Q		Y
KQ		Y
NQ		
		I
		I
Е		
D		YI
	KELGMP IT KT IT NQ Q KQ NQ E D	KELGMPIIME IT KT ITV T NQ Q KQ NQ E D

Supplemental Figure 2. Cyanobacterial L subunit comparison. Amino acids residues 250 to 266 in the *Synechococcus* PCC6301 Rubisco large subunit (PCC6301, GenBank Acc No. (GB) AP008231.1) compared with cyanobacterial Rubisco sequences containing threonine (T) or glutamine (Q) at the equivalent Met-259 codon (in red). The cyanobacterial genome sequences were obtained from the NCBI (<u>http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi</u>) and JGI (<u>http://genome.jgi-psf.org/mic_home.html</u>) genome databases. Dashes are included to optimize the alignment. The sequences were aligned by the Clustal V method and only residues differing from the PCC6301 sequence are shown. PCC6803, (GB: <u>BA000022</u>); PCC7421, (GB: <u>BA000045</u>); WH8501, (JGI: <u>400856410</u>); IMS101, (JGI: <u>403238160</u>); ATCC29423, (GB: <u>CP000117</u>): PCC7120, (GB: <u>BA000019</u>); PCC73102 (GB: <u>NZ_AAAY02000040</u>); CC9902, (GB: <u>CP000097</u>); CC9605, (GB: <u>CP000435</u>); PCC7942, (GB: <u>CP000100</u>); PCC8102, (GB: <u>BA000039</u>); *P. marinus* (9 strains, GB: <u>CP000095</u> (str. NATL2A), <u>CP000111</u> (str. MIT 9312), <u>CP000551</u> (str. AS9601), <u>CP000552</u> (str. MIT 9515), <u>CP000553</u> (str. NATL1A), <u>CP000554</u> (str. MIT 9303), <u>AE017126</u> (str. CCMP1375), <u>BX548174</u> (str. MED4) and <u>BX548175</u> (str. MIT9313)).