
Details on discrimination algorithm for IUPAC model

Geir Kjetil Sandve, Osman Abul, Vegard Walseng and Finn Drabløs

The search space of IUPAC motifs is explored depth-first in a (implicit) search tree
where each level of the tree corresponds to a position in the motif (Figure 1). Each node
has 15 children, corresponding to the possible IUPAC symbols at the position corresponding
to the next level in the tree. Consequently, a node nd at level i of the tree then corresponds
to a motif of length i, with symbols at each positions given by the nodes on the path from
the root to node nd.

The computation being done in each node is given in Algorithm 1. First, the score of
the node is computed and the best motif is updated (lines 10-14) and returned (line 27).
For each non-leaf node, the nodes to branch to are determined and recursed (lines 15-26).
The instances in the current positive hit list are projected at position Level + 1 and only
nucleotides appearing at least once in that position and their combinations are considered
(lines 16-17) to reduce branching factor. Each of these IUPAC symbols are evaluated
against the bounding condition (line 22) after computing their hit counts in positive (line
19) and negative (line 20) sets. The IUPAC symbols that are not bounded are recursed at
the next level (line 23).

The algorithm is initialized with the following inputs; n equal to motif width, Level = 0,
Best Score equal to the smallest possible value for the scoring function (i.e. -1 for CC),
Best Solution = Ø, Edge Labels = Ø, Hits Pset (Hits Nset) equal to the set of all
positive (negative) instances, Size Pset = |Hits Pset|, and Size Nset = |Hits Nset|.

There are mainly 5 optimizations of efficiency we employ in the algorithm, Bit-strings,
Bounding, Projection to next level, Pre-computation, and Counting without scanning.

Bit-strings: The algorithm operates on bit-strings to increase the computational effi-
ciency, i.e. Hits Pset and Hits Nset are represented by bit-strings. A bit-string for a
node is calculated by intersecting the bit-string of the parent node and a pre-computed
bit-string for the IUPAC symbol of the node at its corresponding position. The count of
1s in the bit-string for positive substrings gives TP, while the count of 1s in the bit-string
for negative substrings gives FP.

Bounding: The algorithm itself is a branch and bound algorithm. It prunes any node for
which no node in its subtree can improve on the current score. This is achieved by keeping
the maximum score (lines 10-14) found so far throughout the search. As a substring that do
not match the first positions of a motif can never match the whole motif, the current TP of
a node nd is an upper bound for every successor of nd. By a similar argument, a substring

1

Algorithm 1 Algorithm for efficient identification of optimum IUPAC motif
Traverse IUPAC(. . .)

1: INPUT: n : motif length
2: INPUT: Level : Depth of the current node
3: INPUT: Best Score : Best score so far
4: INPUT: Best Solution : Best solution so far
5: INPUT: Edge Labels : Ordered labels on edges from the root to this node
6: INPUT: Hits Pset : Subset of instances in positive set matching all ancestors in

respective columns
7: INPUT: Hits Nset : Subset of instances in negative set matching all ancestors in

respective columns
8: INPUT: Size Pset : Number of instances in positive set
9: INPUT: Size Nset : Number of instances in negative set

10: score← Compute Score(|Hits Pset|, |Hits Nset|, Size Pset, Size Nset)
11: if score > Best Score then
12: Best Score← score
13: Best Solution← Edge Labels
14: end if
15: if Level < n then
16: X ← {x|x ∈ {A,C, G, T}, Count(Hits Pset[Level + 1] == x) > 0}
17: Xopen ← {IUPAC(β)|β ∈ powerset(X)−Ø}
18: for β ∈ Xopen do
19: Hits Pset Child(β)← Compute Hitset(Hits Pset, β)
20: Hits Nset Child(β)← Compute Hitset(Hits Nset, β)
21: PNbrOnes(β)← number of 1s in Hits Pset Child(β)
22: if not Bounded(PNbrOnes(β), Size Pset, Size Nset,Best Score) then
23: Best Solution ← Traverse IUPAC(n, Level + 1, Best Score,

Best Solution, concat(Edge Labels, β), Hits Pset Child((β),
Hits Nset Child((β), Size Pset, Size Nset)

24: end if
25: end for
26: end if
27: return Best Solution

2

x xß1 ßk ß15

0

1

2

Levels

n

x x

Figure 1: Depth-first search of IUPAC motifs.

that matches the first positions of a motif need not match an extension of the motif. We
have therefore used a trivial lower bound of zero on FP (line 22). Some weak bounds
on FP will often be possible to find, but it will require complicated and computationally
expensive calculations with small effects on pruning.

Projection to next level: Base symbols not appearing in the next position of any positive
instances of the current node can not improve motif score. So, it suffices to consider only
symbols appearing at least once in the next position of such instances, as well as their
combinations. This is exploited in line 16 and 17, resulting in reduced branching factor.

Pre-computation: Bit-strings are pre-computed for each non-degenerate/degenerate IU-
PAC symbol at each motif position (for the set of positive and negative substrings sep-
arately). Each bit in the bit-strings represents whether a respective instance matches a
specific symbol in a position. This makes the computation in line 19 and 20 very efficient.

Reducing bit-string counting: We first consider each non-degenerate β ∈ Xopen in the
loop at line 18 and count the 1s in Hits Pset Child(β). For degenerate β ∈ Xopen there
is no need to do bit-string counts, it suffices to sum the counts computed for constituents
of β. This results in efficient counting in line 21.

3

