
SI Text

1 The belief propagation (BP) algorithm

Until recently, no efficient algorithm was known to solve the random classification prob-

lem for binary weights with an extensive number of patterns (p ∝ N). Recently, [2]

applied a BP algorithm to the binary perceptron and showed that it can find a solution

up to a value of α ≈ 0.7. The algorithms presented in this work have been derived from

the BP algorithm. Hence, for the sake of completeness, we give here a brief description

of the BP algorithm applied to the ±1 perceptron problem.

Consider the set W∗ of all the (unknown) synaptic weights vectors which properly

implement the input/output mapping of the patterns. A uniform sampling of this set

defines a probability space space over the set W∗ of all perfect classifiers. Over this

space we are interested in single marginals, that is in the probabilities

p±i = PW∗ (wi = ±1) = |{w ∈ W∗ : wi = ±1}| / |W∗| (1)

that the single synapses take a certain binary value in a randomly chosen solution (here

|·| denotes number of element of a finite set).

The computation of these marginals constitutes the first step in the process of finding

the optimal synaptic weights, as in other optimization problems to which a similar

strategy has been applied with success [3, 5]. Once the marginals are computed, one

typically proceeds iteratively by fixing the synaptic weights accordingly.

In this scheme, the learning problem is thus converted in the problem of computing

marginals, which unfortunately in the worst-case is a procedure taking exponential time

in the number of synapses. However, under some weak correlations assumption, it is

possible to write a closed set of equations for the marginals which can be solved efficiently

by iteration. This procedure is well known in physics under the name of Bethe-Peierls

approximation or cavity method (where it is used to evaluate the equilibrium properties

of mean-field models) and in information theory as BP [6].

In turn, the iteration scheme can be implemented as a distributed computation, a fact

which opens the possibility of implementing a dynamical scheme governed by local rules

which actually solves the equation and hence provides the marginals we are interested

in. This feature is what will allow us to identify versions of BP which are simple enough

to be considered of potential biological interest, in the spirit of other algorithms which

1

have been recently proposed [7].

For simplicity, just as in the main text, we will assume Ξ− = ∅, without loss of

generality. The BP approach consists first in finding the marginal probabilities for

synaptic weights wi on perfect classifiers of restricted problems:

• pwi

i→a is the probability for synaptic weight wi for a weight vector that satisfies a

restricted classification problem in which variable i does not participate in classi-

fication of pattern a,

pwi

i→a = PW∗

i→a
(wi)

where PW is the uniform measure over W and

W∗
i→a =

w ∈ W :
∑

j

wjξ
b
j > 0 ∀b 6= a,

∑

j 6=i

wjξ
a
j > 0

• ηwi

a→i is the probability for synaptic weight wi for a weight vector that satisfies a

restricted classification problem in which variable i participates in classification of

pattern a only,

ηwi

a→i = PW∗

a→i
(wi)

where again P is defined as in Eq.1 and

W∗
a→i =

w ∈ W :
∑

j 6=i

wjξ
b
j > 0 ∀b 6= a,

∑

j

wjξ
a
j > 0

BP equations for these variables read [2]:

ηwi

a→i ∝
∑

{wj :j 6=i}

∏

j 6=i

p
wj

j→aΘ

∑

j

wjξ
a
j

 (2)

pwi

i→a ∝
∏

b6=a

ηwi

b→i (3)

where Θ [x] denotes the Heaviside function (Θ [x] = 1 if x ≥ 0, Θ [x] = 0 otherwise),

i, j indices run over 1, . . . , N and a, b are pattern indices. The ∝ symbol indicates

normalization prefactors that ensure η+
a→i + η−

a→i = 1 and p+
i→a + p−i→a = 1.

On a solution of Eqs. 2-3, BP estimation of marginals in Eq. 1 can be computed as:

pwi

i ∝
∏

a

ηwi

a→i (4)

2

The standard way to solve Eqs. 2-3 is by iteration. Call S = ({ηa→i} , {pa→i})a,i and

consider f : S 7→ f (S) the function defined by right-hand sides of Eqs. 2-3. Build the

sequence St as the iteration St = f (t) (S0) from some initial condition S0 (e.g. random

or uniform), until the distance of two consecutive terms ‖St+1 − St‖ is zero or small

enough. Then evaluate Eq. 4.

A modified version of the equations with a reinforcement term introduced in [2] re-

placing the right-hand term in Equation 3 by pwi

i

∏

b6=a ηwi

b→i drive the system to converge

to a polarized solution in which pwi

i is either 1 or 0, i.e. a single configuration. With

weak correlation assumptions, the reinforced equations in terms of h = tanh−1 (p+ − p−)

and u = η+ − η− become in a leading order approximation (see full derivation in [2]):

ht+1
i =

∑

t′≤t

∑

b

ut
b→i (5)

mt+1
i = tanh

(

ht+1
i

)

(6)

ut
a→i =

1√
N

f

1√
N

∑

j 6=i

ξa
j m

t
j ,

1

N

∑

j 6=i

(

1 − (mt
j)

2
)

 (7)

where

f (a, b) =
1√
b

G
(

a√
b

)

H
(

− a√
b

) (8)

and the auxiliary functions G and H are defined by:

G (x) =
1√
2π

e−
1

2
x2

(9)

H (x) =
∫ ∞

x
G (y)dy (10)

The idea is that in the course of the learning process the ‘hidden variables’ hi go progres-

sively towards large positive or negative values, and hence variables mi become closer

and closer to +1 or −1. Hence, at the end of the learning process, the synaptic weights

can be set to the sign of mi.

These equations can describe an on-line learning protocol by switching to asynchronous

update, choosing a time scale τ defined by nατ = t, and picking randomly at time τ a

pattern ξτ from the set Ξ, giving:

mτ
i = tanh (hτ

i) (11)

3

hτ+1
i = hτ

i +
ξτ
i√
N

f

1√
N

∑

j 6=i

ξτ
j mτ

j ,
1

N

∑

j 6=i

(

1 − (mτ
j)

2
)

 (12)

This (on-line) algorithm is fast and solves the learning process up to large values of α

[2], but it has a number of unrealistic features

• Each synapse needs to keep a memory of two analog variables: mi and hi;

• It is unclear what could be the neurobiological implementation of the two argu-

ments of the function f .

This algorithm can be simplified in order to get rid of such features, while keeping a high

capacity and fast convergence. This is done heuristically by crudely simplifying f as a

Heaviside step function of the first argument, and replace the tanh with a sign function:

mτ
i = sign (hτ

i)

hτ+1
i = hτ

i + ξτ
i Θ

−
∑

j 6=i

ξτ
j mτ

j

where we removed two inessential factors N− 1

2 . As a last step, we identify the mi fields

with the synaptic weights wi and avoid the ambiguous hi = 0 case by initializing all the

hi’s to odd values and introducing a factor 2 in their update term, so that they can only

assume odd values:

hτ+1
i = hτ

i + 2ξτ
i Θ

−
∑

j 6=i

ξτ
j wτ

j

wτ+1
i = sign

(

hτ+1
i

)

In this way, we are left with a single discrete variable for each synapse, and the

updating signal is much simpler.

2 BP on 0,1 perceptron

The derivation of the BPI algorithm for the 0,1 perceptron from the BP scheme closely

follows the track of the previous section. The main differences are that in this case the

threshold θ is different from 0 and that we need to consider patterns belonging to both

the sets Ξ+ and Ξ−.

4

The 0,1 perceptron model is defined in the main text; here we recall that we consider

each pattern to have on average a fraction f of active inputs (ξa
i = 1), and the same

fraction of active outputs (σa = 1). We refer to f as the ‘coding level’. Both the maximal

capacity and the optimal threshold depend on this parameter; we will postpone this issue

to the end of this section, the following derivation being general.

The on-line BP-inspired equations (equivalent to Eqs. 11-12 for the ±1 perceptron)

are:

mτ
i = tanh (hτ

i) (13)

hτ+1
i = hτ

i + ξτ
i f01

στ ,
1

2

∑

j 6=i

ξτ
j

(

1 + mτ
j

)

,
1

4

∑

j 6=i

ξτ
j

(

1 − (mτ
j)

2
)

 (14)

wτ+1
i =

1

2

(

sign
(

hτ+1
i

)

+ 1
)

(15)

where

f01 (σ, a, b) =
1

2
√

b

G
(

(a + σ − θ) /
√

b
)

σ − (2σ − 1)H
(

(a + σ − θ) /
√

b
)

 (16)

As before, we only need to keep the internal variables hi, updating them at each time

step upon presentation of a pattern (ξτ , στ).

Once again, Eqs. 13-16 can be discretized in a crude way by substituting mi by its

sign and the function f01 by a step function, so that the internal hidden variables hi can

only take integer values; we further restrict them to take odd values, and the equations

become:

hτ+1
i = hτ

i + 2ξτ
i (2στ − 1)Θ

− (2στ − 1)

∑

j 6=i

ξτ
j wτ

j − θ

wτ+1
i =

1

2

(

sign
(

hτ+1
i

)

+ 1
)

We now resort to the issue of optimally choosing the threshold θ. This can be com-

puted by means of the replica method, as done in [8]. In the dense coding case f = 0.5,

the maximal theoretical capacity is αmax ≈ 0.59, which can be obtained by optimally

setting the threshold as θ ≈ 0.16N . For lower values of α, the optimal threshold (in

terms of the number of solutions to the learning problem) is higher, and reaches 0.25N

at α = 0. However, the algorithm performance is not much affected by the value of θ,

5

and setting it to the value corrensponding to αmax has proven to be optimal even at

lower values of α, with respect to both capacity and convergence time.

When varying f the picture is similar; furthermore, the ratio between the optimal

value of θ (taken at αmax) with respect to the average number of active inputs in each

pattern fN is almost constant, going from 0.32 for f = 0.5 to 0.30 for f = 3 · 10−3.

Thus, with these settings, about 30% of the synapses will be active after learning in all

cases.

3 Binary vs K state synapses

In order to make the problem of learning with binary synapses tractable, we ended up

‘hiding’ a multi-state variable inside each synapse. This raises naturally the question of

the practical usefulness of such a device: from the architectural point of view, it may be

questionable wether it is better to use a binary device with K hidden states than one

with K visible states; in fact, the latter has a greater theoretical capacity. However, the

BPI algorithms can be superior either when the learning phase and the recalling phase

are totally distinct or in presence of noise or unreliable devices.

The hidden variables are only necessary during learning; thus, the overhead required

for storing and managing the hidden variables may be limited to that period. Note

that this was already possible using the original BP algorithm, but the BPI version is

both faster (it has a better scaling with the dimentions of the problem N) and much

easier to implement. In an on-line setting, in which learning has to occur in real time,

noise resistance is the primary reason for using binary synapses; this issue is discussed

in section 4.4.

Interestingly, the rule set we propose for BPI becomes useful even when using a device

with a limited number of visible states K: in this case, the learning problem rapidly

becomes hard from the algorithmic point of view as N gets large. The binary case is the

extreme example of this situation; as we have shown in Fig. 3 in the main text, the SP

algorithm may perform worse than the SBPI algorithm with the same number of states

in such a situation. Since the capacity of the visible-state device has to be greater than

that of the binary device, the reduced efficiency is due to the SP algorithm. We found

that some efficiency could be recovered by using a modified version of this algorithm, in

which an analog of the rule R2 for BPI was added. The modified perceptron algorithm

MP was defined as:

Compute I = ξτ · wτ , then

6

(R1) If I > θm, do nothing

(R2) If 0 < I <= θm then:

a) If wτ
i ξ

τ
i ≥ 1, then wτ+1

i = wτ
i + 2ξτ

i

b) Else do nothing

(R3) If I ≤ 0 then wτ+1
i = wτ

i + 2ξτ
i .

This is very similar to the BPI algorithm, in which the hi’s are replaced by the wi’s

and the secondary threshold is θm 6= 1. The SP algorithm can be recovered by setting

θm = 0.

Fig. 5 shows that both convergence speed and storage capacity are higher with MP 6=
0; the optimal value is different for different tasks (cfr. Fig. 5 A and B), and has a

strong dependence on the number of states K (not shown). With the proper settings,

this algorithm reaches slightly higher capacities than BPI even with very few states K

compared to the number of synapses N , though being still more sensitive to noise (see

section 4.4).

4 Simulation results

In this section, we report evidence for some results cited in the main text.

4.1 Optimal value of the parameter ps

As cited in the main text, we found that there is a tradeoff between the maximal capacity

which can be achieved by the SBPI algorithm and the convergence speed, depending on

the value of the parameter ps, i.e. depending on the probability of applying rule R2 when

the classification of a pattern is just barely correct. We defined the optimal value of ps

to be the one which minimizes the average number of presentations per pattern required

for learning at a given α, and performed some tests using 10 samples at N = 20001,

varying α by steps of 0.05 and ps by steps of 0.1; as can be seen in Fig. 6, we found an

almost linear relation.

4.2 Distribution of hidden states

Fig. 7 A shows the final distribution histogram of the hidden variables hi for one sample

with N = 64001 after learning with α = 0.3, for the BPI algorithm. When the number

7

of allowed states is infinite, the distribution has the shape of two bell-like curves. The

width of the distribution is proportional to
√

N , as shown in Fig. 7 B. A
√

N scaling

comes naturally from an unsupervised application of rule R3 (i.e. applying it regardless

of whether an error is made or not) with a set of αN random patterns. However,

an unsupervised learning rule would lead to a Gaussian distribution centered on 0.

Supervision (leading to applying rules R2 and R3 conditioned by the value of the total

input I) leads to the polarization of the distribution around two symmetric peaks at

finite values of h, but leaves the
√

N scaling unchanged. Introducing an upper and

lower bound on h leads to the appearance of two peaks in the distributions at these

bounds. These bounds stop the synapses that would otherwise tend to go to very large

positive or negative values. If the bounds are large enough, this has no adverse effect

on learning because those synapses that reach such large values of h never change sign

during the learning process. Reducing further the number of states starts to affect the

shape of the whole distribution when the value of the bounds becomes smaller than

the location of the peaks of the distribution in the unbounded case. At this point the

whole distribution changes, and the convergence time starts to change compared to the

unbounded case.

4.3 Optimal value of the number of hidden states K

In order to determine the optimal number of internal states K for a given number of

synapses N , we performed some test with N ranging from 1001 to 32001 and looked

for the value of K which maximized capacity. Fig. 8 shows that the optimal number of

internal states K scales roughly like
√

N , both in the ±1 and in the 0,1 scenarios.

4.4 Robustness against noise

In this section, we focus on the robustness of the binary perceptron with respect to noise

wich might affect the hidden states. We tested two different situations: one in which

noise is added during the learning process and afterwards, and another one in which

it is only applied after learning has occurred. The first setting mimics the situation in

which the multi-stable elements representing the internal states are not reliable on the

learning time scale; the latter represents a situation in which learning sessions occur on

much faster time-scales compared to the time during which the stored memories have

to be available for recalling.

We compared a binary device with hidden states (implementing SBPI) with a per-

8

ceptron with visible states implementing a standard perceptron algorithm SP and the

modified version described in section 3, MP. For proper comparison, all of these devices

had the same number of synapses N = 4001 and the same overall number of stable states

(K hidden states of BPI were compared to K visible states of the standard perceptron).

The optimal value (the one maximizing robustness) of the secondary threshold for the

MP algorithm was found to be θm ≈ 30 for the bounded case K = 100 and θm ≈ 180

for the unbounded case.

Protocol 1. We added gaussian noise to the multi-stable states during the learning

process, once after each presentation of the whole pattern set. The process was carried

on even after perfect learning was eventually achieved. We generated random numbers

according to a normal distribution with standard deviation z, truncated them towards 0,

doubled them and added them to the states value (truncation is needed in order to keep

the state values integer, doubling to keep them odd). Thus, using z = 1 for example,

each synapse had a 68% probability of staying unchanged, a 28% probability of making

one step upwards or downwards, etc. Each run consisted in 10000 presentations per

pattern; as a measure of robustness, we averaged the number of errors made by each

device in the last 1000 presentations, a time at which it has reached its asymptotic

value. The results are shown in Fig. 9 A-B. The binary device shows a higher resistance

to noise: even at the lowest noise level, z = 1, the K-visible state device was unable to

keep the error rate to 0.

Protocol 2. Each simulation was divided into a short learning period (200 presen-

tations per pattern) and a longer recalling period during which noise was applied and

memories were tested without any further learning. The protocol for noise application

was the following: at each iteration, each synapse had a fixed probability pZ = 0.1 to

switch one state up or down with equal probability. After each iteration, the whole

pattern set was probed and the corresponding number of errors recorded. Note that the

time scale of the recalling period is arbitrary with respect to that of the learning period.

Results are shown in Fig. 9 C-D. We found that the binary device with K hidden states

was remarkably more robust than the K-visible state device, especially at short times.

Of course, in the limit of very long times all three rules perform equally badly, since all

memory of the stored patterns is erased, but at any finite time the system with binary

synapses is significantly better.

9

References

[1] G. Parisi, M. Mezard, and R. Zecchina (2002) Science 297, 812-815

[2] A. Braunstein and R. Zecchina. Learning by message-passing in networks of discrete

synapses. Phys. Rev. Lett., 96:030201, 2006.

[3] A. Braunstein, R. Mulet, A. Pagnani, M. Weigt, and R. Zecchina. Polynomial itera-

tive algorithms for coloring and analyzing random graphs. Phys. Rev. E, 68:036702,

2003.

[4] M. Mezard and R. Zecchina (2002) Phys. Rev. E 66, 056126

[5] A. Braunstein, M. Mezard and R. Zecchina. Survey propagation: an algorithm for

satisfiability. Random Structures and Algorithms, 27:201–226, 2005.

[6] David Mackay. Information Theory, Inference, and Learning Algorithms. Combridge

University Press, 2003.

[7] S. Fusi, P. J. Drew, and L. F. Abbott. Cascade models of synaptically stored mem-

ories. Neuron, 45(4):599–611, Feb 2005.

[8] H. Gutfreund and Y. Stein Capacity of neural networks with discrete synaptic cou-

plings. J. Phys. A: Math. Gen., 23:2613-2630, 1990.

10

