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Supporting Text

In this supplement, we outline the variational model developed in
refs. 1 and 2.

Variational Model. A configuration of the protein is mod-
eled by the N position vectors of the α carbons of the polypeptide
backbone. Partially ordered ensembles of polymer configurations are
described by a reference Hamiltonian corresponding to a harmonic
chain inhomogeneously constrained to the native structure {rN

i }

βH0 =
3

2a2

X
ij

ri · Γ0
ij · rj +

X
i

Ci(ri − rN
i )2. [1]

The first term enforces polymeric constraints, with a = 3.8Å and
Γ

(0)
ij determined by the correlations of a freely rotating chain (3). The

values of the harmonic constraints, {C}, control the magnitude of the
fluctuations of each monomer about the native structure (i.e., the tem-
perature factors). Ensembles of partially ordered configurations are
represented by monomer densities ni(r) = 〈δ(r − ri)〉0 described
as Gaussian distributions with variance Gii = 〈|δri|2〉0/a2 about
the mean position of the ith monomer, si =

P
GijCjr

N
i . Here, the

correlations Gij = 〈δri ·δrj〉0/a2 depend on both the polymeric and
structural constraints through G−1

ij = Γij + Ciδij .
The population of a partially ordered ensemble specified by

the constraints {C} is controlled by the free energy F [{C}] =
E[{C}] − TS[{C}]. Here, T is the temperature, S[{C}] is the
entropy loss due to localizing the residues around mean positions,
and E[{C}] is the energy associated with the partially ordered en-
semble. The values of the variational constraints are determined by
the critical points in the free energy surface. For each local minimum
or saddlepoint, there corresponds to a set of N variational constraints
that solve ∂CiF [{C}] = 0. Transition state ensembles are identi-
fied as the saddlepoints of F [{C}] that connect local minima (in a
steepest descents sense). A folding route is the series of minimum-
saddlepoint-minimum which connect the globule and native minima
of F [{C}].

Barrier Crossing Dynamics. The formation of local order along
the folding route is characterized by the degree of localization about
the native positions

ρi[{C}] =
D
exp

h
−3αN(ri − rN

i )2/2a2
iE

0
. [2 ]

We refer to ρi as the native density. The prefactor, in turn, is de-
termined by the growth rate of ρi(t) along the unstable mode of the
free energy. In the formalism developed in ref. 2, the growth rate is

developed through the polymer dynamics of the constrained chain.
Since the reference chain is harmonic, the correlation function be-
tween monomers i and j, Gij(t) = 〈ri(t) ·rj(0)〉0, can be expressed
as a sum over normal (Rouse) modes

Gij(t) =
X

p

QipQjp

λp
e−σλpt [3]

where the coefficients Qip and relaxation rates λp are determined by

(Γ0
ij + C?

i δij)Qjp = λpQip. [4 ]

Here, the monomer relaxation rate σ = 3D0/a2 is set by the effective
bond length a and monomer diffusion coefficient D0.

The effective diffusion matrix corresponding to the native density
dynamics, µij(t), can be defined through the Laplace transform of
the correlation functions Cij(t) = 〈ρi(t)ρj(0)〉0 − 〈ρi〉0〈ρj〉0:

µ̂(ω) = C(0) · Ĉ−1(ω) · C(0) − ωC(0). [5]

Here, C(t) is determined by the polymer dynamics through the
monomer correlations G(t). Since µij(t) depends on both the struc-
ture of the constrained ensemble as well as time, this formalism gives
a microscopic realization of the effective diffusion coefficient used
in more general formulations of landscape theory which includes the
kinetics of trapped configurations (4,5).

Finally, the prefactor is given by k0 = |ω|/2π, where the growth
rate ω is the negative eigenvalue of

µ̂ij(|ω|)Γjkuk = −|ω|ui [6 ]

where Γij = ∂2βF [{C?}]/∂ρi∂ρj is the curvature of the free energy
with respect to the native density evaluated at the saddlepoint.
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