SI Methods

Under the conditions of the experiments, the effective G_t concentration ([$G\alpha\beta\gamma$], i.e., the concentration of G_t that is immediately available for interaction with R^*) is lower than the total G_t concentration [G_t]_{tot}. This is due to dissociation of G_t into its subunits ($G\alpha$ and $G\beta\gamma$) and G_t binding to detergent micelles (M), which do not contain rhodopsin. In other words, dissociated G_t and G_t bound to micelles without rhodopsin is not competent to interact with R^* . Because the isolated $G\alpha$ subunit is highly soluble, we assume that only $G\alpha\beta\gamma$ and $G\beta\gamma$ bind to detergent micelles. The resulting equilibria are given below:

$$G\alpha + G\beta\gamma + M \qquad \stackrel{K_1}{\longleftarrow} \qquad G\alpha\beta\gamma + M$$
$$\begin{bmatrix} K_2 & & \\ & \\ & \\ & \\ G\alpha + G\beta\gamma M & \stackrel{K_1}{\longleftarrow} & \\ & & \\$$

According to the reaction scheme, the dissociation constant of G_t subunit dissociation (K_I) is given by

$$K_{1} = \frac{[G\alpha] \cdot [G\beta\gamma]}{[G\alpha\beta\gamma]} = \frac{[G\alpha] \cdot [G\beta\gamma M]}{[G\alpha\beta\gamma M]} , \qquad [1]$$

and the dissociation constant of micelle interaction with $G\alpha\beta\gamma$ or $G\beta\gamma$ (K_2) is given by

$$K_{2} = \frac{[G\beta\gamma] \cdot [M]}{[G\beta\gamma M]} = \frac{[G\alpha\beta\gamma] \cdot [M]}{[G\alpha\beta\gamma M]} \quad .$$
^[2]

The mass balance equations for G_t , $G\alpha$, $G\beta\gamma$, and M are:

$$[G_t]_{tot} = [G\alpha]_{tot} = [G\beta\gamma]_{tot}$$
[3]

$$[G\beta\gamma]_{tot} = [G\beta\gamma] + [G\beta\gamma M] + [G\alpha\beta\gamma] + [G\alpha\beta\gamma M]$$
^[4]

$$[G\alpha]_{tot} = [G\alpha] + [G\alpha\beta\gamma] + [G\alpha\beta\gamma M]$$
^[5]

$$[M]_{tot} = [M] + [G\beta\gamma M] + [G\alpha\beta\gamma M]$$
[6]

The mass balance equations assume that the concentration of G_t complexed with R^* (< 3 nM) or bound to detergent micelles containing R^* is negligible.

Because of the mutual dependence of the variables, it is not possible to find an analytic solution for $[G\alpha\beta\gamma]$ as a function of $[G_t]_{tot}$. For numerical computing, two additional variables are defined:

$$x_1 = \frac{G\alpha}{K_1} = \frac{G\alpha\beta\gamma}{G\beta\gamma}$$
[7]

$$x_2 = \frac{M}{K_2} = \frac{G\beta\gamma M}{G\beta\gamma}$$
[8]

Using Eqs. 2, 7, and 8, the variables $[G\alpha\beta\gamma]$, $[G\beta\gamma M]$, and $[G\alpha\beta\gamma M]$ can now be expressed as functions of $[G\beta\gamma]$:

$$[G\alpha\beta\gamma] = x_1 \cdot [G\beta\gamma]$$
^[9]

$$[G\beta\gamma M] = x_2 \cdot [G\beta\gamma]$$
^[10]

$$[G\alpha\beta\gamma M] = \frac{[G\alpha\beta\gamma] \cdot [G\beta\gamma M]}{[G\beta\gamma]} = x_1 \cdot x_2 \cdot [G\beta\gamma]$$
[11]

Substituting for $[G\alpha\beta\gamma]$, $[G\beta\gamma M]$, and $[G\alpha\beta\gamma M]$ in the balance equations (Eqs. 4–6) yields

$$[G\beta\gamma] = \frac{[G\beta\gamma]_{tot}}{1+x_1+x_2+x_1\cdot x_2}$$
[12]

$$[G\alpha] = [G\alpha]_{tot} - x_1 \cdot [G\beta\gamma] - x_1 \cdot x_2[G\beta\gamma]$$
[13]

$$[M] = [M]_{tot} - x_2 \cdot [G\beta\gamma] - x_1 \cdot x_2 \cdot [G\beta\gamma]$$
[14]

Eqs. 7–9 and 12–14 were used for numerical calculation of the effective G_t concentration $[G\alpha\beta\gamma]$ as a function of total added G_t ($[G_t]_{tot}$) in the fitting procedure (see below). Together with the numerical calculation of $[G\alpha\beta\gamma]$, the dependence of the initial G_t activation rate (v) on $[G_t]_{tot}$ was fitted to a Michaelis–Menten type hyperbolic function

$$v = \frac{V_{\max} \cdot [G\alpha\beta\gamma]}{K_m + [G\alpha\beta\gamma]} , \qquad [15]$$

where V_{max} and K_m denote the maximum value of v and the Michaelis constant, respectively. The data points of the titration experiments performed at three different DDM concentrations were

simultaneously fitted using the same set of parameters V_{max} , K₁, and K₂ but with individual Michaelis constants (K_m^1 , 0.006% DDM; K_m^2 , 0.008% DDM, and K_m^3 , 0.01% DDM).

The total concentration of DDM micelles $[M]_{tot}$ was estimated as follows. The data shown in the inset of Fig. 5*B* indicate that under the experimental conditions, the critical micelle concentration of DDM is 0.005%. Together with the molecular mass of DDM (511 g/mol) and the aggregation number of DDM [98 monomers per micelle (1)], the concentrations of DDM micelles are 1.2 μ M (0.006% DDM), 1.6 μ M (0.008% DDM), and 2.0 μ M (0.01% DDM), respectively.

Fitting Procedure

The data points of the titration experiments performed at three different DDM concentrations (Fig. 5*B*) were numerically fitted with the following fitting procedure using Scientist software (MicroMath). The superscript of the variables identifies the set of titration experiment (1: 0.006% DDM; 2: 0.008% DDM, and 3: 0.01% DDM). All concentrations are given in μ M.

Independent variable:	$[G_t]_{tot}$
Dependent variables:	v^{1}, v^{2}, v^{3}
Parameters:	$K_1, K_2, V_{\max}, K_m^1, K_m^2, K_m^3$
$[G\alpha]_{tot} = [G_t]_{tot}$	
$[G\beta\gamma]_{tot} = [G_t]_{tot}$	

 $[M]_{tot}^{1} = 1.2$ $[M]_{tot}^{2} = 1.6$ $[M]_{tot}^{3} = 2.0$ $x_{1}^{1} = [G\alpha]^{1} / K_{1}$ $x_{1}^{2} = [G\alpha]^{2} / K_{1}$ $x_{1}^{3} = [G\alpha]^{3} / K_{1}$ $x_{2}^{1} = [M]^{1} / K_{2}$ $x_{2}^{2} = [M]^{2} / K_{2}$ $x_{2}^{3} = [M]^{3} / K_{2}$

$$\begin{split} &[G\beta\gamma]^{1} = [G\beta\gamma]_{tot} / (1 + x_{1}^{1} + x_{2}^{1} + x_{1}^{1} \cdot x_{2}^{1}) \\ &[G\beta\gamma]^{2} = [G\beta\gamma]_{tot} / (1 + x_{1}^{2} + x_{2}^{2} + x_{1}^{2} \cdot x_{2}^{2}) \\ &[G\beta\gamma]^{3} = [G\beta\gamma]_{tot} / (1 + x_{1}^{3} + x_{2}^{3} + x_{1}^{3} \cdot x_{2}^{3}) \\ &[G\alpha]^{1} = [G\alpha]_{tot} - x_{1}^{1} \cdot [G\beta\gamma]^{1} - x_{1}^{1} \cdot x_{2}^{1} \cdot [G\beta\gamma]^{1} \\ &[G\alpha]^{2} = [G\alpha]_{tot} - x_{1}^{2} \cdot [G\beta\gamma]^{2} - x_{1}^{2} \cdot x_{2}^{2} \cdot [G\beta\gamma]^{2} \\ &[G\alpha]^{3} = [G\alpha]_{tot} - x_{1}^{2} \cdot [G\beta\gamma]^{3} - x_{1}^{3} \cdot x_{2}^{3} \cdot [G\beta\gamma]^{3} \\ &[M]^{1} = [M]_{tot}^{1} - x_{2}^{1} \cdot [G\beta\gamma]^{1} - x_{1}^{1} \cdot x_{2}^{1} \cdot [G\beta\gamma]^{1} \\ &[M]^{2} = [M]_{tot}^{2} - x_{2}^{2} \cdot [G\beta\gamma]^{2} - x_{1}^{2} \cdot x_{2}^{2} \cdot [G\beta\gamma]^{2} \\ &[M]^{3} = [M]_{tot}^{3} - x_{2}^{3} \cdot [G\beta\gamma]^{3} - x_{1}^{3} \cdot x_{2}^{3} \cdot [G\beta\gamma]^{3} \\ &[G\alpha\beta\gamma]^{1} = x_{1}^{1} \cdot [G\beta\gamma]^{1} \\ &[G\alpha\beta\gamma]^{2} = x_{1}^{2} \cdot [G\beta\gamma]^{2} \\ &[G\alpha\beta\gamma]^{2} = x_{1}^{2} \cdot [G\beta\gamma]^{2} \\ &[G\alpha\beta\gamma]^{2} = x_{1}^{2} \cdot [G\beta\gamma]^{2} \\ &[G\alpha\beta\gamma]^{3} = x_{1}^{3} \cdot [G\beta\gamma]^{3} \\ &v^{1} = V_{max} \cdot [G\alpha\beta\gamma]^{2} / (K_{m}^{2} + [G\alpha\beta\gamma]^{2}) \\ &v^{3} = V_{max} \cdot [G\alpha\beta\gamma]^{3} / (K_{m}^{3} + [G\alpha\beta\gamma]^{3}) \\ &0 < [G\alpha]^{1} < [G\alpha]_{tot} \\ &0 < [G\alpha]^{1} < [G\alpha]_{tot} \\ &0 < [M]^{1} < [M]_{tot}^{1} \\ &0 < [M]^{2} < [M]_{tot}^{2} \\ \\ &0 < [M]^{3} < [M]_{tot}^{3} \\ \end{aligned}$$

References

^{1.} Rosevear P, VanAken T, Baxter J, Ferguson-Miller S (1980) Biochemistry 19:4108-4115.