SI Methods

Under the conditions of the experiments, the effective G_t concentration ([$G\alpha\beta\gamma$], i.e., the concentration of G_t that is immediately available for interaction with R^*) is lower than the total G_t concentration [Gt]_{tot}. This is due to dissociation of G_t into its subunits (Gα and Gβγ) and G_t binding to detergent micelles (M) , which do not contain rhodopsin. In other words, dissociated G_t and G_t bound to micelles without rhodopsin is not competent to interact with R^* . Because the isolated G α subunit is highly soluble, we assume that only $G\alpha\beta\gamma$ and $G\beta\gamma$ bind to detergent micelles. The resulting equilibria are given below:

$$
G\alpha + G\beta\gamma + M \xrightarrow{\mathbf{K}_{1}} G\alpha\beta\gamma + M
$$
\n
$$
\begin{array}{ccc}\n\downarrow \mathbf{K}_{2} & \downarrow \mathbf{K}_{2} \\
\downarrow \mathbf{K}_{2} & \downarrow \mathbf{K}_{2} \\
G\alpha + G\beta\gamma M & \xrightarrow{\mathbf{K}_{1}} & G\alpha\beta\gamma M\n\end{array}
$$

According to the reaction scheme, the dissociation constant of G_t subunit dissociation (K_I) is given by

$$
K_1 = \frac{[G\alpha] \cdot [G\beta\gamma]}{[G\alpha\beta\gamma]} = \frac{[G\alpha] \cdot [G\beta\gamma M]}{[G\alpha\beta\gamma M]},
$$
\n^{(1]}

and the dissociation constant of micelle interaction with $G\alpha\beta\gamma$ or $G\beta\gamma$ (K_2) is given by

$$
K_2 = \frac{[G\beta\gamma] \cdot [M]}{[G\beta\gamma M]} = \frac{[G\alpha\beta\gamma] \cdot [M]}{[G\alpha\beta\gamma M]} \tag{2}
$$

The mass balance equations for G_t , $G\alpha$, $G\beta\gamma$, and M are:

$$
[G_t]_{tot} = [G\alpha]_{tot} = [G\beta\gamma]_{tot} \tag{3}
$$

$$
[G\beta\gamma]_{\text{tot}} = [G\beta\gamma] + [G\beta\gamma M] + [G\alpha\beta\gamma] + [G\alpha\beta\gamma M] \tag{4}
$$

$$
[G\alpha]_{\text{tot}} = [G\alpha] + [G\alpha\beta\gamma] + [G\alpha\beta\gamma M] \tag{5}
$$

$$
[M]_{\text{tot}} = [M] + [G\beta\gamma M] + [G\alpha\beta\gamma M] \tag{6}
$$

The mass balance equations assume that the concentration of G_t complexed with R^* (< 3 nM) or bound to detergent micelles containing R^* is negligible.

Because of the mutual dependence of the variables, it is not possible to find an analytic solution for [$G\alpha\beta\gamma$] as a function of $[G_t]_{tot}$. For numerical computing, two additional variables are defined:

$$
x_1 = \frac{G\alpha}{K_1} = \frac{G\alpha\beta\gamma}{G\beta\gamma} \tag{7}
$$

$$
x_2 = \frac{M}{K_2} = \frac{G\beta\gamma M}{G\beta\gamma} \tag{8}
$$

Using Eqs. 2, 7, and 8, the variables [$G\alpha\beta\gamma$], [$G\beta\gamma$ M], and [$G\alpha\beta\gamma$ M] can now be expressed as functions of [Gβγ]:

$$
[G\alpha\beta\gamma] = x_1 \cdot [G\beta\gamma] \tag{9}
$$

$$
[G\beta\gamma M] = x_2 \cdot [G\beta\gamma] \tag{10}
$$

$$
[G\alpha\beta\gamma M] = \frac{[G\alpha\beta\gamma] \cdot [G\beta\gamma M]}{[G\beta\gamma]} = x_1 \cdot x_2 \cdot [G\beta\gamma]
$$
 [11]

Substituting for [$G\alpha\beta\gamma$], [$G\beta\gamma$ M], and [$G\alpha\beta\gamma$ M] in the balance equations (Eqs. 4–6) yields

$$
[G\beta\gamma] = \frac{[G\beta\gamma]_{tot}}{1 + x_1 + x_2 + x_1 \cdot x_2} \tag{12}
$$

$$
[G\alpha] = [G\alpha]_{\text{tot}} - x_1 \cdot [G\beta\gamma] - x_1 \cdot x_2 [G\beta\gamma]
$$
\n
$$
\tag{13}
$$

$$
[M] = [M]_{tot} - x_2 \cdot [G\beta\gamma] - x_1 \cdot x_2 \cdot [G\beta\gamma]
$$
\n
$$
\tag{14}
$$

Eqs. 7–9 and 12–14 were used for numerical calculation of the effective G_t concentration [$G\alpha\beta\gamma$] as a function of total added G_t ([G_t]_{tot}) in the fitting procedure (see below). Together with the numerical calculation of [Gαβγ], the dependence of the initial G_t activation rate (*v*) on [G_t]_{tot} was fitted to a Michaelis–Menten type hyperbolic function

$$
v = \frac{V_{\text{max}} \cdot [G\alpha\beta\gamma]}{K_m + [G\alpha\beta\gamma]}
$$
 (15)

where V_{max} and K_m denote the maximum value of v and the Michaelis constant, respectively. The data points of the titration experiments performed at three different DDM concentrations were

simultaneously fitted using the same set of parameters V_{max} , K_1 , and K_2 but with individual Michaelis constants (K_m^1 , 0.006% DDM; K_m^2 , 0.008% DDM, and K_m^3 , 0.01% DDM).

The total concentration of DDM micelles $[M]_{tot}$ was estimated as follows. The data shown in the inset of Fig. 5*B* indicate that under the experimental conditions, the critical micelle concentration of DDM is 0.005%. Together with the molecular mass of DDM (511 g/mol) and the aggregation number of DDM [98 monomers per micelle (1)], the concentrations of DDM micelles are 1.2μ M (0.006% DDM), 1.6 µM (0.008% DDM), and 2.0 µM (0.01% DDM), respectively.

Fitting Procedure

The data points of the titration experiments performed at three different DDM concentrations (Fig. 5*B*) were numerically fitted with the following fitting procedure using Scientist software (MicroMath). The superscript of the variables identifies the set of titration experiment (1: 0.006% DDM; 2: 0.008% DDM, and 3: 0.01% DDM). All concentrations are given in μ M.

 $[G\alpha]_{\text{tot}} = [G_t]_{\text{tot}}$ $[G\beta\gamma]_{tot} = [G_t]_{tot}$ $[M]_{\text{tot}}^{1} = 1.2$ $[M]_{tot}^2 = 1.6$ $[M]_{tot}^3 = 2.0$ 1 $x_1^1 = [G\alpha]^1/K$ 1 $x_1^2 = [G\alpha]^2/K$ 1 $x_1^3 = [G\alpha]^3 / K$ 2 $x_2^1 = [M]^1/K$ 2 $x_2^2 = [M]^2 / K$ 2 $x_2^3 = [M]^3 / K$

$$
[G\beta\gamma]^1 = [G\beta\gamma]_{tot}/(1 + x_1^1 + x_2^1 + x_1^1 \cdot x_2^1)
$$

\n
$$
[G\beta\gamma]^2 = [G\beta\gamma]_{tot}/(1 + x_1^2 + x_2^2 + x_1^2 \cdot x_2^2)
$$

\n
$$
[G\beta\gamma]^3 = [G\beta\gamma]_{tot}/(1 + x_1^3 + x_2^3 + x_1^3 \cdot x_2^3)
$$

\n
$$
[G\alpha]^1 = [G\alpha]_{tot} - x_1^1 \cdot [G\beta\gamma]^1 - x_1^1 \cdot x_2^1 \cdot [G\beta\gamma]^1
$$

\n
$$
[G\alpha]^2 = [G\alpha]_{tot} - x_1^2 \cdot [G\beta\gamma]^2 - x_1^2 \cdot x_2^2 \cdot [G\beta\gamma]^2
$$

\n
$$
[G\alpha]^3 = [G\alpha]_{tot} - x_1^3 \cdot [G\beta\gamma]^3 - x_1^3 \cdot x_2^3 \cdot [G\beta\gamma]^3
$$

\n
$$
[M]^1 = [M]^1_{tot} - x_2^1 \cdot [G\beta\gamma]^1 - x_1^1 \cdot x_2^1 \cdot [G\beta\gamma]^1
$$

\n
$$
[M]^2 = [M]^2_{tot} - x_2^2 \cdot [G\beta\gamma]^2 - x_1^2 \cdot x_2^2 \cdot [G\beta\gamma]^2
$$

\n
$$
[M]^3 = [M]^3_{tot} - x_2^3 \cdot [G\beta\gamma]^2 - x_1^2 \cdot x_2^2 \cdot [G\beta\gamma]^2
$$

\n
$$
[G\alpha\beta\gamma]^1 = x_1^1 \cdot [G\beta\gamma]^1
$$

\n
$$
[G\alpha\beta\gamma]^2 = x_1^2 \cdot [G\beta\gamma]^2
$$

\n
$$
[G\alpha\beta\gamma]^3 = x_1^3 \cdot [G\beta\gamma]^3
$$

\n
$$
v^1 = V_{max} \cdot [G\alpha\beta\gamma]^3/(K_m^1 + [G\alpha\beta\gamma]^1)
$$

\n
$$
v^2 = V_{max} \cdot [G\alpha\beta\gamma]^2/(K_m^2 + [G\alpha\beta\gamma]^2
$$

References

^{1.} Rosevear P, VanAken T, Baxter J, Ferguson-Miller S (1980) *Biochemistry* 19:4108-4115.