
This document provides additional detail on the procedural and statistical methods and 
the results, including activation tables and figures that could not be included in the main 
paper due to space limitations. The description below is intended to supplement the 
description provided in the paper rather than duplicating material already reported. 
 

Supporting Methods  
 
Participants 
 Volunteers were 15 healthy right-handed males between 20 and 30 years old. All 
volunteers were non-smokers who had no personal history of medical, psychiatric 
illness, substance abuse or dependence, and no family history of inheritable illnesses. 
Volunteers were not taking psychotropic medications or hormone treatments and did not 
exercise in excess of 1 hour three times a week. Volunteers were instructed not to drink 
alcohol for at least 24 hours, nor to exercise or eat for at least 3 hours before the study. 
Written informed consent was obtained in all cases, and all procedures used were 
approved by the University of Michigan Institutional Review Board and the Radiation 
Drug Research Committee.  To balance power to detect placebo effects in the group and 
look for opioid-reported placebo analgesia correlations, 8 participants with confirmed 
reported placebo analgesia effects were selected from a larger sample reported 
elsewhere (1), and the remaining 7 participants were recruited de novo.  We did not find 
any effects of returning group status on reported placebo analgesia (see Results below) 
and thus we collapsed across returning and new participants in other analyses. 
 
Experimental procedures 

Stimulation sites. Prior to calibration, testing for warmth-insensitive fields was 
performed on possible skin sites using a ~43 degree stimulus held against the skin by 
the experimenter, and skin patches for which participants reported noticeably reduced 
sensation were excluded.  Five eligible 2 cm x 2 cm square regions were marked prior to 
the study on the left volar forearm. A central site was designated for calibration. Two 
sites proximal to the body from the calibration site and two sites distal to the calibration 
site were designated for placebo and control cream application, with the location of the 
placebo cream counterbalanced across participants. Of the two sites within each of the 
proximal and distal regions, one was designated for manipulation trials, and the other 
was designated for test trials, so that each block of trials was administered on a 
previously unstimulated skin site. This design precludes the possibility that stimuation 
history during the manipulation phase affects nociception on test blocks.  

Calibration.  Thermal stimuli were administered in ascending fashion in 0.5-
degree steps until the temperatures required to evoke low, medium and high pain 
sensations could be reliably established. Three subjective pain levels were selected for 
each participant, corresponded to ratings of 2, 5 and 8 respectively on a continuous VAS 
scale with 10 numbered anchor points, where 0 represented “no pain” and 10 
represented “unbearable pain.”  Participants were instructed to rate undetectable stimuli 
with “no sensation” with 0, “noticeable, nonpainful sensation” with 1, “nonpainful warmth” 
with 2, “barely painful” stimuli with 3, “moderately painful” stimuli with 5, and stimuli “near 
the maximum you could tolerate” with 8.  Ratings of 10 resulted in termination of the 
stimulation by the experimenter.  The temperatures required to achieve consistent VAS 
ratings of 2 were used then used as the “warm” stimuli, while those required to achieve 
consistent VAS ratings of 8 were used as “hot” stimuli for the remainder of the 
experiment. Thus, temperatures were selected so that the reported subjective pain was 
approximately equivalent for all participants. 
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Thermal stimuli and trials.  Stimuli were applied using a Medoc TSA-II 
Thermosensory Analyzer with a 1.5 x 1.5 cm Peltier thermode device. Stimulation 
epochs included  3-s ramp-up and 4.5 s ramp-down periods, with 17 s at target 
temperature, for a total of 24.5 s per stimulus. Each stimulus was presented in the 
context of a trial involving anticipation, stimulation, rating, and an inter-trial interval.  The 
purpose of the anticipation period was for consistency with previous studies and to 
stabilize attention to nociceptive processing across trials.  An auditory warning cue (~650 
Hz sinusoidal tone) of 1 s duration cued the start of the anticipation interval, which 
persisted 4 s after the offset of the tone.  The thermal stimulus followed at the end of this 
interval.  At the end of the 24.5 s stimulation, another auditory cue (1 s duration) 
signaled participants to rate painful stimuli on the 10-point VAS scale.  A 30.5 s inter-trial 
interval followed, which prevented habituation or sensitization, which can occur with 
shorter rest intervals.  Independent pilot testing was used to establish timing parameters 
that were safe and did not produce sensitization, and the stability of pain ratings across 
trials was verified during the experiment, as shown in Fig. 6C. 

Expectancy manipulation phase. During this phase, which was conducted prior 
to scanning, subjects were instructed that the painful Level 8 stimuli would be applied 5 
times to each region, but that the analgesic would block pain on the placebo-treated 
region. In fact, Level 8 stimuli were applied to the control-treated region, and Level 5 
stimuli were applied to the placebo-treated region. Skin regions tested did not overlap 
between manipulation and testing.  
 
MRI Acquisition 

Axial spoiled-gradient recall IR-Prep structural MRI scans were acquired in all 
subjects on either a 1.5 or a 3 Tesla scanner (Signa LX, General Electric, Milwaukee, 
WI) for anatomical localization of PET data (TE = 5.5, TR = 14, TI = 300, flip angle = 20o, 
NEX = 1, 102 contiguous images, 256 matrix, 0.86 x 0.86 x 1.4 mm).  
 
PET Acquisition and Reconstruction  

PET scans were acquired with a Siemens HR+ scanner in 3-D mode 
(reconstructed FWHM resolution ∼5.5 mm in-plane and 5.0 mm axially), with septa 
retracted and scatter correction.  Participants were positioned in the PET scanner 
gantry, and two intravenous (antecubital) lines were placed in the right volar forearm. A 
light forehead restraint was used to eliminate intrascan head movement. [11C]carfentanil 
was synthesized at high specific activity (> 2000 Ci/mmol) by the reaction of 
[11C]methyliodide and a nonmethyl precursor as previously described (2), with minor 
modifications to improve its synthetic yield (3); 10-15 mCi (370-555 MBq) were 
administered during the scan.  Radiotracer administrations for the two scans were 
separated by at least 2 hours to allow for radiotracer decay, and to eliminate any 
possible residual effects from the previous challenge. 

The total mass of carfentanil injected was 0.026 ± 0.01 µg/kg per scan, ensuring 
that the compound was administered in tracer quantities, i.e., subpharmacological 
doses.Fifty percent of the [11C]carfentanil dose was administered as a bolus, and the 
remainder as a continuous infusion using a computer-controlled pump to achieve 
steady-state tracer levels at ~35-40 minutes after tracer administration. Receptor 
occupancy by carfentanil is estimated to be between 0.2% and 0.6% across the brain 
(i.e., in regions with low, intermediate and high µ-opioid receptor concentrations), based 
on the mass of carfentanil administered and the known concentration of opioid receptors 
in the postmortem human brain (4, 5). For each scan, 28 frames of images were 
acquired over 90 min with an increasing duration (30 sec up to 10 min).  Frames of 
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interest in analysis were collected during from 10-40 min for warm and from 50 to 80 min 
for hot thermal stimulation.  

Reconstruction.  Images were reconstructed using an iterative algorithm (brain 
mode; FORE/OSEM 4 iterations, 16 subsets; no smoothing) into a 128 x 128 pixel matrix 
in a 28.8 cm diameter field of view.  Attenuation correction was performed through a 6-
min transmission scan (68Ge source) obtained prior to the PET study, also with iterative 
reconstruction of the blank/transmission data followed by segmentation of the 
attenuation image. Small head motions during emission scans were corrected by an 
automated computer algorithm for each subject before analysis, and the images co-
registered to each other with the same software (6, 7). Time points were then decay-
corrected during reconstruction of the PET data.  

Quantification of binding. Reconstructed image data were transformed on a 
voxel-by-voxel basis into two sets of parametric maps: (a) a tracer transport measure (K1 
ratio), and (b) a receptor-related measure, distribution volume ratio (DVR, equal to 
binding potential (BP) + 1 or Bmax / Kd) + 1). To avoid the need for arterial blood 
sampling, the tracer transport and binding measures were calculated with a modified 
Logan graphical analysis (8), using the occipital cortex (an area devoid of µ-opioid 
receptors) as the reference region. The slope of the Logan plot was used for the 
estimation of the distribution volume ratio (DVR), a measure equal to the (Bmax/Kd) + 1 
for this receptor site and radiotracer. Bmax/Kd (or DVR-1) is the receptor related 
measure (µ-opioid receptor availability, or binding potential). With the bolus-continuous 
infusion tracer administration method employed, the Logan plots become linear 5-7 min 
after the initiation of radiotracer administration, allowing for the calculation of DVR values 
early in the scanning periods (warm stimulation).  K1 and DVR images for each 
experimental period and MR images were co-registered to each other prior to further 
processing.] 

 
PET-MRI image coregistration and spatial normalization 

Because some brain structures of interest were of small size, particularly in the 
midbrain, and artifacts in group analysis are likely to result if images from different 
subjects are not closely aligned, we adopted the enhanced procedures described below 
for registering and standardizing brains across participants.  Robust regression 
procedures (described below) further minimize the impact of local mis-alignment of one 
or a few participants’ brains. 
 Coregistration.  Coregistration procedures developed in our laboratory were 
employed to maximize the quality of the registration of MRI and PET images. MRI 
images were coregistered to the mean PET DVR image for each subject using an 
iterative procedure.  Origins of MRI and the approximate origin PET were set at the 
anterior commissure manually, and gross rotation and translation of the MRI image was 
performed manually as needed prior to beginning the procedure.  SPM2 software was 
then used for automated mutual information coregistration.  As this process can result in 
a suboptimal, local-maximum solution, registrations were checked manually for 
alignment at 14 recognizable landmarks.  The starting position of the MRI image was 
adjusted manually as needed, and the automated mutual information algorithm re-run 
until satisfactory alignment was achieved.  Adequate alignment was achieved in most 
image sets after 1-2 iterations.  In addition, registration quality was quantitatively 
compared across participants to identify those with sub-standard quality, as described 
below. 

Spatial normalization.  Nonlinear image-intensity based normalization of MRI 
images to the standard Montreal Neurologic Institute template (avg152T1.img) in SPM2 
(discrete cosine transform basis set with 35 mm cutoff, low regularization, b-spline image 
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interpolation).  We compared normalization to this template vs. the smoother 
avg305T1.img and T1.img templates and found that it produced superior results for this 
dataset (quantitative results described below were slightly better than using the same 
procedures in SPM5, so we elected to use SPM2). Deformations estimated from high-
resolution MRI images were applied to PET images and resliced to 2 x 2 x 2 mm voxels.   

To quantitatively evaluate normalization, we compared the similarity of 
normalized MRI images with the template image and with the group average according 
to several metrics:  1) Correlation coefficient in intensity values between the two images 
(mean = .60, standard error of the mean (SEM) = .03); 2) mutual information (64 bins; 
using the method used in SPM2), mean = .52, SEM = .04; 3) mean absolute intensity 
difference of Z-transformed (mean-centered and unit variance) images (mean = .45, STE 
= .01).  Outlying subjects were identified (and re-normalized if necessary) by examining 
the distribution of these scores in the group and by visually comparing brains with the 
highest and lowest quality normalizations.  These procedures resulted in acceptable 
normalization results for all participants. 
 
Region of interest (ROI) definition and multiple comparison correction strategy 

Because tests in broadly defined regions (such as “cingulate gyrus”) involve 
many voxels and make it difficult to quantitatively control false positive rates, we 
electronically defined focused ROIs based on previous work.  ROIs were sets of 
contiguous voxels that met all of the following criteria: 1) a priori interest based on 
previous placebo effects in fMRI or 

! 

µ-opioid receptor BP; 2) high levels of 

! 

µ-opioid 
receptor BP in the current sample (> 1.1, reflecting specific binding (see Fig. 6A); 3) 
activation within 10 mm in at least two previous studies of placebo, opioid administration, 
or emotion regulation, from the study set used in Fig 8 of Benedetti et al. (9). In some 
cases, ROI volumes were extended somewhat beyond the boundaries defined in 
criterion 3 above to cover the highest opioid-binding regions in the current sample.  ROIs 
are overlaid on average opioid BP in Fig. 6B; the transparent brown-white color scale 
shows the same categories of BP as in Fig. 6A.       

Eight primary ROIs included periaqueductal gray (PAG), rostral anterior cingulate 
(rACC), pregenual anterior cingulate (pgACC), medial orbital sulcus (MOS) in the mid-
lateral orbitofrontal cortex, lateral orbitofrontal gyrus/inferior frontal gyrus (LOFC), 
amygdala, nucleus accumbens (NAC), and anterior insula (aINS).  Each of these regions 
has been shown to be important for placebo effects in fMRI and/or opioid binding 
studies.  These ROIs were grouped into 13 regions of contiguous voxels (some regions 
involved homologous structures in left and right hemispheres). Additional ROIs in the 
thalamus, dorsolateral prefrontal cortex (DLPFC), medial OFC, and dorsal caudate were 
also defined as above because of their role in opioids and pain regulation in previous 
studies, making 27 contiguous regions in all.  Results are reported correcting for multiple 
comparisons within regions using small volume correction (SVC), and correction for 
multiple comparisons across ROIs was done using a set-level permutation test, as 
described below.  

Correction for multiple comparisons.  We corrected for multiple comparisons 
both within and across ROIs.  We used nonparametric permutation tests to perform 
small-volume correction (SVC) for search over voxels within each a priori ROI. 
Correction across regions for the number of ROIs tested (at the ‘set level’) was also 
performed using the permutation test by comparing the number of significant SVC ROIs 
with the number expected under the null hypothesis.  For ROI sets that show a 
significant number of activated regions, we report SVC-corrected regions (yellow in all 
figures).  Details of the permutation test are described below. 
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An advantage of the set-level correction approach is that each ROI is tested 
individually, which is appropriate if each ROI is hypothesized to be active a priori.  If 
more ROIs reach SVC significance than would be expected by chance in the omnibus 
set-level test, then the individual regions that show significant results may be 
meaningfully interpreted.  Correction across all voxels, ignoring grouping into regions, 
will yield a less sensitive analysis because the more regions (and voxels) are reliably 
activated across studies (and thus the more ROIs), the less sensitive the analysis will be 
in all regions.  Thus, widespread placebo effects will require many more participants to 
establish corrected significance than placebo effects in only limited regions.  This 
undesirable feature is avoided in the set-level correction.   
 
Statistical analysis 
 Statistical analysis was carried out in the General Linear Model (GLM) framework 
using iteratively reweighted least squares (IRLS).  The IRLS GLM is contained in the 
Matlab R2006a function robustfit.m, and was tested and validated using simulations and 
on neuroimaging data (10).  The Robust Regression Toolbox (written by TDW), freely 
available at http://www.columbia.edu/cu/psychology/tor/, contains the code used to run 
the analyses described in this paper. 

GLM design matrix.  The GLM design matrix consisted of an intercept, reported 
placebo analgesia for each subject (centered to be mean zero), and administration order 
(placebo first vs. control first, contrast coded). The estimate of the intercept is an 
estimate of group activation, controlling for reported analgesia and order.  Fitting this 
model allowed us to test whether contrast estimates (e.g., PH – CH) were statistically 
different from zero for the group while simultaneously controlling for additional known 
sources of variance (reported placebo analgesia and order).  Effects of reported placebo 
analgesia on contrasts in opioid binding are of theoretical interest and are presented in 
the results as brain-reported analgesia correlations.  While order was controlled in all 
analyses, it was not a covariate of interest and is not reported. 

Permutation and correction procedures for individual ROIs.  IRLS multiple 
regressions were run on each voxel in each ROI.  We used permutation tests to estimate 
the distribution of the maximum t-value in each ROI—and summary statistics including 
the number of individually significant ROIs in the whole set—under the null hypothesis of 
no placebo effects on opioid activity.  This allowed us to correct for multiple spatially 
dependent tests without making any assumptions about the spatial covariance structure.  
IRLS regressions were repeated 10,000 times on permuted data. For each contrast of 
interest, the rows of the s x v data matrix (s = number of subjects x v = number of voxels 
in the analysis) were subjected to the same permutation on each iteration, preserving 
the spatial dependence in the data.  The maximum t-statistic in each contiguous, a priori 
region of interest (ROI) was saved for each iteration, and the distribution of maximum t-
values under the null hypothesis was thus estimated. Observed (correct permutation) t-
statistic values within each ROI were thresholded at the 95th percentile of the null 
hypothesis distribution, corresponding to p < .05 corrected for multiple comparisons (one 
tailed) or p <.10 corrected (two-tailed) within each ROI.   

A different permutation method was appropriate for the intercept and for the 
covariates.  What was permuted in each case is described in the next section.  

Null hypotheses and permutation methods for group effect and covariates.  
For the intercept, the null hypothesis was a group average contrast value of 0, and the 
signs of the rows of the s x v data matrix were permuted (as in (11)) and t-values for the 
intercept estimated with IRLS, controlling for the covariates.  For the covariates, a 
separate procedure was employed. The null hypothesis was a zero correlation between 
the data and each covariate of interest.  The order of the rows of the s x v data matrix 
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were permuted, breaking the association between data and regressors while 
conditioning on the marginal distributions of both data and covariates.  These two tests 
are discussed in (11), though we apply them here in the context of IRLS regression.   

Pooling of weights in ROIs. Subject weights were pooled (averaged) within 
contiguous a priori regions of interest. Pooling of weights allows subject weights for a 
voxel to be influenced by those for neighboring voxels regularizing the distribution of 
weight values across space and making each subject’s contribution to the group result 
the same throughout the ROI.  This procedure is analogous to variance smoothing in the 
methods of Nichols (12) and Worsley (13), as it decreases the variability in the t-
distribution estimates and increases sensitivity in the presence of multiple comparisons.   

Set-level correction across ROIs.  Even if ROIs are specified a priori and each 
is expected to show an effect of interest, there is potential for false positives if many 
ROIs are tested.  Rather than raise the primary threshold and decrease the likelihood of 
finding true effects in ROIs, we report significance at small-volume corrected (SVC) 
levels within each ROI independently.  To provide a test of whether there is significant 
activation in the set of ROIs as a whole, we used the permutation test to estimate the 
null hypothesis distribution of the number of significant ROIs that exceed the SVC 
threshold.  Thus, if too few ROIs are significant, we cannot reject the null hypothesis that 
no effect is present in the set of ROIs as a whole.  Alternatively, if more ROIs are 
significant than would be expected by chance, it can be concluded with confidence that 
one or more ROIs truly showed the effect of interest (e.g., placebo – control opioid 
activity).  

Robust partial correlation coefficients.  Though statistic values were obtained 
using IRLS GLM analysis, we report correlation effect sizes in terms of partial correlation 
coefficients between opioid activation and PRP. For this, subject weights from the IRLS 
procedure were used to determine a weighted correlation coefficient:   

Weighted partial correlations do not reflect the inflation of error variance adopted 
in the IRLS procedure (according to (14)), and so are not always monotonically related 
to statistical significance.  Thus, they are used descriptively in this report. 
 
Multivariate analysis: nonmetric multidimensional scaling (NMDS) and clustering 

Selection of regions.  Thirty-two regions (groups of contiguous voxels) that 
showed placebo effects in one or more contrasts were selected for network analysis.  
These regions were all contained in the set of a priori ROIs and constitute contiguous 
groups of voxels within ROIs that were significant with either SVC correction or at p < 
.005 in one of the following contrasts: Placebo x Heat interaction, placebo effect during 
hot stimulation, placebo effect during warm stimulation.  These regions constituted the 
set of voxels that showed placebo effects of some kind in our study.  Sizes of regions 
ranged from 1 to 90 voxels, with a mean of 15.5 voxels.    
 Measure of connectivity.  Connectivity between pairs of regions was estimated 
by correlating average opioid binding values (across warm/hot and placebo/control 
conditions) across participants.  Spearman’s 

! 

"  was chosen as a measure of 
connectivity because it is robust to violations of the normality assumption and less 
sensitive to outliers.  It is slightly less sensitive than the standard Pearson’s correlation, 
but due to the potential in neuroimaging studies of outliers arising from local variations in 
the quality of inter-subject registration and other sources, we feel that 

! 

"  provides 
estimates that more accurately represent the true underlying connectivity.  Analyses with 
Pearson’s r showed similar patterns of results and, as expected, were slightly more 
sensitive in many cases.   
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 NMDS analysis. NMDS and its predecessor metric MDS are dimension 
reduction procedures, similar to principal components analysis (PCA), independent 
components analysis (ICA), and related techniques.  The purpose of applying it to this 
dataset is twofold: first, to capture as much of the structure of connectivity as possible in 
a low-dimensional space that can be visualized in two or three dimensions; and second, 
to reduce the number of variables relative to the number of observations (participants, in 
this case) in subsequent cluster analyses.  This dimension reduction reduces the 
sparseness in the clustering space and stabilizes the solution.  The visualizations and 
clustering of regions based on patterns of opioid responses (Figs. 4, 11, and 12) uses 
the NMDS and clustering procedures described below.  The tests of placebo effects on 
connectivity between pairs of regions do not depend on these procedures.  

MDS analysis, like PCA, uses eigenvalue decomposition to find a set of 
canonical components that capture a maximal amount of variance in the data.  
Components are sorted by variance explained, so that the first components capture the 
most prominent patterns of systematic covariation among variables (in this case, 
variables are brain regions).  Both MDS and PCA provide eigenvectors, or weights on 
brain regions for each component, and component scores. In this case, component 
scores are the canonical patterns of individual differences across participants. However, 
because MDS was developed for characterizing and visualizing patterns of similarity (or 
in this case, connectivity) in a set of variables (15), the method has a different theoretical 
emphasis, and additional measures beyond those used in classic MDS can increase the 
validity of inferences made on connectivity patterns.   

The theoretical emphasis in MDS is on the similarity of brain regions, rather than 
on underlying distributed components that may contribute to multiple regions.  The input 
data is a matrix of generalized dissimilarities (or distances) among a set of objects. The 
concept is that the pattern of dissimilarities can be thought of in terms of distances 
between objects (brain regions) in an underlying, unobserved multidimensional space.  
As a general example, consider that a 50 x 50 matrix of measured distances between 
cities is the product of a much simpler arrangement of cities in three-dimensional 
geographic space.  The goal of MDS is to recover the locations in space from the pattern 
of similarities.  If the measured distances are accurate enough, the 1225 observed inter-
city distances in the 50 x 50 matrix can be perfectly represented as Euclidean distances 
among the 50 cities in three-dimensional space (only 150  parameters).  An advantage is 
that all 1225 estimates contribute to the reconstruction of the objects in space so that 
error due to any single pairwise estimate is minimized.   

In this case, the data is a matrix of correlations among brain regions transformed 
to represent dissimilarities using the formula: 

! 

d = (1" #) /2, where d is dissimilarity and 

! 

"  is Spearman’s rho.  Thus, 

! 

"=1, a perfect correlation, yields = 0 (no dissimilarity), and 

! 

"=-1, a perfect negative correlation, yields d = 1 (maximum dissimilarity). NMDS 
decomposes the matrix of dissimilarities 

! 

D into a regions x dimensions set of stimulus 
coordinates for the regions in k-dimensional space.  Brain regions closer together in this 
space are more similar in their profile of activation across subjects, and are more highly 
correlated.  The dimensionality of the space is chosen to capture as much of the original 
similarity matrix with as few dimensions as possible. An error metric developed by 
Kruskal (16) and widely used is called stress, and is defined as follows:  

! 

stress =

(dij "
ˆ d ij )

2

i, j

#

ˆ d ij
2

i, j

#
 



PLACEBO IN OPIOID BINDING, SUPPLEMENT  8 

where 

! 

ˆ d ij is defined as the Euclidean distance (the most commonly used distance 
metric) between regions i and j implied by the model, and 

! 

dij are the observed 
dissimilarities between regions1. MDS algorithms minimize stress or a similar metric, and 
with one additional adjustment described below it is what is minimized by the NMDS 
algorithm we applied here.  In the current analysis, an 8-dimensional space captured 
most of the variance in the data and so was deemed sufficient. With this dimensionality, 
the error is on average only about 3% as large as the average model-implied distance.  
Figure 11A shows the plot of stress (y-axis) against the number of dimensions included 
in the model (x-axis).  The ‘elbow’ in the plot is the point at which including additional 
dimensions returns a lower payoff in variance explained, and the solution was chosen to 
be at the elbow in this function.  Changing the dimensionality of the space has little effect 
on the solution, as the extra dimensions included or excluded have very little variance.  
However, including extra dimensions will have a destabilizing effect on the clustering 
solution described below, so is undesirable.  Whereas the clustering solution and the 
visualization of regions in Figs. 4 and 12 depend on the dimensionality and choice of 
NMDS as a decomposition method, the tests of placebo effects on pairwise connectivity 
among regions does not depend on the NMDS or clustering. 

Importantly, the classic MDS solution assumes that the model-implied 
dissimilarities (

! 

ˆ D ) in the reduced-dimensional model are linearly related to the measured 
dissimilarities.  This is the case with cities, which are embedded in a truly Euclidean 
space, but it is not necessarily true for brain regions.  If the observed dissimilarities are 
not linearly related to the distances in the assumed underlying similarity space, 
minimizing stress on Euclidean distances is not appropriate.  The insight of Shepard (17, 
18), however, was that it is not necessary to assume a Euclidean space—only to 
assume that observed dissimilarities are some monotonic function of the distances 
among regions in the underlying similarity space. 
He found that from ordinal information about the relative dissimilarities alone it is very 
often possible to recover an underlying metric space.  

Shepard proposed a check on whether the metric model is adequate: the 
observed dissimilarities are plotted against the model implied dissimilarities, and if the 
relationship is nonlinear, minimizing stress in a metric space is inadequate.  The 
Shepard plot from our analysis is shown in Fig. 11B.  The nonlinear relationship 
indicates that nonmetric MDS (NMDS) is more appropriate.   

In NMDS, which was applied to this dataset, a nonmonotonic regression of the 
actual distances 

! 

D against 

! 

ˆ D  is computed.  Nonmonotonic (or isotonic) regression finds 
the best-fitting monotonically increasing function of 

! 

D on

! 

ˆ D .  This is done by considering 
increasing values of 

! 

D and aggregating (averaging) 

! 

ˆ D  values that are not monotonically 
increasing with previous values since the last monotonic increase. Successive values of 

! 

ˆ D  are averaged until the average is as high or higher than the previous values. If there 
is no relationship, the fit will approximate a flat line. The nonmonotonic regression plot is 
shown by the thin black line in Fig. 11B. The stress metric is adjusted to compare 

! 

ˆ D  with 
the best-fitting monotonic function of 

! 

D, denoted 

! 

f (D) : 

                                                
1 The subscript notation is used to indicate that measure sums squared deviations 
across all pairwise combinations of regions rather than across all elements of 

! 

D. 
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! 

stress =

( f (dij ) "
ˆ d ij )

2

i, j

#

ˆ d ij
2

i, j

#
 

As there is no closed-form solution for minimizing nonmetric stress, the algorithm 
works iteratively by recomputing stimulus coordinates and assessing stress.  The best 
fitting solution was found by gradient descent. To avoid convergence on a local 
minimum, we repeated the analysis 10 times with different random starting 
configurations chosen from a multivariate normal distribution and chose the best 
solution.  This method produced highly replicable results across replications of the 
analysis (no visually observable differences were found in the NMDS plot in Fig. 4). The 
NMDS algorithm used was implemented in Matlab 7.2’s (Mathworks, Natick, MA) 
mdscale.m.   

Clustering of regions in component space.  The goal of the analysis is to find 
sets of regions whose opioid binding levels are coherent across individuals (i.e., that 
show similar patterns of individual differences in binding levels) and distinguishable from 
that of other sets.  Clustering algorithms are well-suited to finding such sets because 
they are designed to identify classes of nearby objects (here, brain regions).   

By contrast, grouping regions that show similarly high loadings on individual PCA 
or ICA components is not an appropriate method for identifying sets of regions.  This is 
because regions that load highly on one component are not necessarily very similar 
overall (they may differ on other components).  In addition, critically, components in the 
PCA solution are determined up to rotation, which means that there is no inherent 
meaning to a region’s loading highly on one component.  The ICA solution is not 
computationally indeterminate, but the rotation of the component loadings is dominated 
by noise. Thus, as the entire solution may rotate in multidimensional space and produce 
identical (or near-identical in ICA) fits to the data, the set of regions loading on any one 
component may shift arbitrarily.  Thus, the similarity of regions in multidimensional space 
rather than on any single component is an appropriate measure for grouping regions into 
coherent sets.   

We used hierarchical clustering with average linkage (clusterdata.m in Matlab 
7.2) to identify sets of regions.  The NMDS component scores are estimated coordinates 
in the 8-dimensional solution space, and regions were grouped based on Euclidean 
distances in this space, (ignoring nonlinearities in the underlying space; this 
approximation may be improved on in future research).  We used a permutation test to 
choose the number of clusters and to provide inferences on whether the distances 
between regions were truly distributed multimodally (as opposed to a single-mode, 
single-cluster distribution expected if there were no systematic sub-networks in the 
opioid system). For each possible solution between 2 and 19 clusters, we first computed 
a measure of clustering quality, as defined in (19): 

! 

q =
dio " dinn

max(dio ,dinn )i

#
k

#  

where d denotes Euclidean distance, and 

! 

d
i
o

is the distance from region i to the 
center of its own class, 

! 

d
i
nn

is the distance to the nearest neighboring class, and k 
indexes over clusters. We then permuted the columns of the dimension scores, re-
applied the clustering algorithm, and calculated q based on the permuted data.  The 
permutation procedure disrupts clusters of nearby regions by exchanging their locations 
in each dimension with those of other regions, while conditionalizing on the marginal 
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distribution of regions in each dimension.  This process was repeated 10,000 times to 
develop a null-hypothesis distribution of q.  Estimating the distribution of q for each 
candidate number of clusters k allowed us to assess Z-scores observed-data clustering 
solution, defined as: 

! 

Zk =
qobs " q null

(qnull " q null )
2

1

I

#

I

 

! 

qobs is the quality for the observed solution, 

! 

qnull is the quality for the permuted-
data solution for one iteration, and 

! 

I  is the number of iterations (10,000).  Fig. 11C 
shows 

! 

Z
k
on the y-axis plotted against candidate choices for k on the x-axis.  The 

highest Z-values were found for 7 clusters, which we used as our estimate of k.  The 
permuted-data distribution of q is shown for the 7-cluster solution in Fig. 11C, and q for 
the observed-data solution is shown by the vertical black line.  The significance of the 
results (p < .0001, Z = 4.0) indicates that connectivity in opioid binding among regions 
was not unimodally distributed.  Note that we did not statistically compare the 7-cluster 
solution against other candidate k’s.  Other choices of k may be reasonable candidates 
as well and statistically indistinguishable from the 7-cluster solution. 

          
Comparing dependent correlations across conditions 

Assessing whether the correlation between two regions is stronger under 
placebo than control conditions involves comparing dependent correlations.  Because 

! 

"placebo  and 

! 

"
control

are estimated on the same participants, the 

! 

"  values themselves are 
positively correlated.  Steiger (20) provides several alternative statistics for estimating 
the covariance of dependent correlation estimates and constructing statistical tests.  We 
adopt the recommended test statistic denoted 

! 

Z 
2

*  (Eq. 14 of (20)).   
To test whether placebo induced a shift towards positively intercorrelated regions 

among a set of regions (i.e., functional integration), we constructed a permutation test by 
permuting the rows of the participants x regions data matrices independently for each 
region.  This procedure disrupts inter-region correlations present in the observed data 
while conditionalizing on the marginal distributions in all regions.  The same permuted 
ordering was applied to placebo and control data matrices to ensure that a comparable 
manipulation was applied to each matrix.  We counted the number of significant positive 
correlations minus significant negative pairwise correlations in the permuted dataset 
(both p < .05) to estimate the null hypothesis distribution of differences, and compared 
the observed-data differences in numbers of significant correlations against this null 
distribution to get p-values. Spatial dependence is not preserved in the permuted data, 
and this is a direction for future development.    

 
 

Supplementary Results 
 
Much of the supplementary results are contained in supplementary figures 6-12, below, 
and their respective legends.  Additional notes are reported here.   

Placebo effects in reported pain.  Placebo treatment led to significant reported 
analgesia during noxious heat (PH – CH in reports, 5.58 for CH vs. 5.07 for PH, robust  
t(13) = 1.87, p = .042, one-tailed. The PW – CW contrast was not significant (1.57 vs. 
1.42, p > .10), and the Temperature x Placebo interaction was marginally significant, 
t(13) = 1.71, p = .055, indicating greater placebo reduction during pain as expected.  
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Placebo administration order (placebo first vs. control first) did not interact with any of 
these effects.  There was also no significant CH - PH effect of whether participants had 
participated in a previous behavioral session (0.81 for the returning group vs. .19 for the 
first-session group, t(9.6) = 1.04, p > .10). As planned prior to enrollment, opioid data 
were analyzed as a function of reported placebo analgesia, irrespective of returning-
group status. 
 
Functional integration with placebo  

A remaining question is whether functional integration with placebo is specific to 
heat.  Examination of inter-region correlations for placebo during warm stimulation 
revealed a significant integration PAG-rACC relationship in this contrast also, 

! 

"placebo  = 
0.51 vs. 

! 

"
control

 = -.04, Z = 2.00, p = 0.04) suggesting that this functional integration may 
not depend on the level of noxious stimulation.  Future studies with larger samples are 
needed address this issue more completely.  
 
Causes of negative correlations 

Negative correlations between reported placebo analgesia (C –P  in pain report) 
and placebo increases in opioid activation (CH – PH and [CH – PH] – [CW – PW]) were 
found in many of the same areas that show group placebo-induced endogenous opioid 
activity increases in heat (CH – PH). Scatterplots are shown in Figs. 7 and 8; none seem 
to be driven by outliers, and robust regression techniques minimized the possibility of 
outlier-induced correlations. The finding of negative correlations in many regions is 
unexpected because they indicate that whereas opioid activation increases with placebo 
on average, high responders show less release.  As mentioned in the main text, placebo 
responders also have lower BP across all conditions in many regions (see Discussion 
and Fig. 9).  Supplementary voxel-wise analyses of correlations between opioid BP in 
control conditions (CW and CH) revealed widespread negative correlations with reported 
placebo in an around ROIs.  Fig. 9D shows t-maps thresholded at p < .05 (two-tailed). 
Such correlations could occur for two reasons: Placebo responders may have higher 
tonic levels of endogenous opioids during testing, or placebo responders may have 
higher receptor binding affinity, which would lead to lower overall binding levels for a 
given endogenous opioid tone for these participants. Thus,  

Responder vs. nonresponder differences in endogenous opioid tone could arise if 
responders release greater quantities of endogenous opioids in response to the 
experimental context or the manipulation phase preceding PET.  If this is the case, the 
inclusion of the expectancy manipulation may be an important experimental difference 
from previous work (21). Alternatively, responders may have higher endogenous opioid 
tone for other reasons. Opioid tone has been assessed in rodents by measuring 
increases in glucose metabolism or c-fos expression after low-dose naloxone 
administration. Such studies suggest that there is tonic endogenous opioid activity in the 
brainstem and the amygdala of rodents that has a net inhibitory effect on metabolism 
(22, 23). In humans, naloxone administration has been shown to increase fMRI activity 
in a number of cortical (e.g., anterior cingulate, prefrontal and insular, entorhinal and 
parahippocampal cortices) and subcortical (e.g., basal ganglia, hippocampus) regions 
(24). 

Whether placebo responder/nonresponder differences are related to endogenous 
opioid tone or individual differences in binding affinity, it remains to explain why high 
responders still reported less pain for [CH – PH] when opioid BP levels were less 
different across conditions. If low binding in placebo responders is caused by 
endogenous opioid release in CH, then a potential explanation could be that opioid 
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release has a larger analgesic effect when opioid levels are high than when they are low.  
If low binding is caused by individual differences in receptor affinity, then a unit increase 
in opioid release is expected to have a larger impact on pain in high-affinity participants 
(i.e., placebo responders).  Both explanations rest on the idea that the relationship 
between opioid activity and pain is nonlinear—specifically, that, a unit increase in opioid 
release in subjects with low binding leads to a larger analgesic effect than a unit 
increase in subjects with high binding.  This may be tested more directly in future studies 
with larger samples.  The linearity of the relationship between opioid release and 
analgesia has not been extensively evaluated to our knowledge.  However, if CH binding 
differences between high and low responders is related to differences in binding affinity, 
then a unit increase in release is expected to have a more potent effect in the high-
affinity placebo responders; thus, a nonlinear relationship whose form is consistent with 
our data is expected. 

 
A third class of explanations is that opioid release may be related to relief at the 

offset of stimulation.  If so, low responders, who report more pain in the placebo 
condition, may experience more relief in that condition and thus show higher opioid 
levels.  However, opioid release cannot be simply related to relief, because that 
hypothesis would predict that opioid activation should be higher in the control condition 
(more pain, more relief) than the placebo condition overall, which is the opposite of what 
we found. While a mixture of opioid release to pain and relief in the right proportions 
could conceivably explain both the main effects and correlations with reported placebo, 
this class of explanations does not fit the data as well.  We tentatively favor the first 
explanation, of ceiling effects due to opioid release across all experimental conditions in 
high responders. 
 

Supporting Discussion 
 
A note on expectancy manipulation: Expectancy or conditioning?  

While the expectancy manipulation we employ is similar to conditioning 
procedures used in some placebo studies (e.g., 25), it lacks a clearly defined 
unconditioned stimulus and response because no active treatment is being paired with 
sensory cues, and may operate via different mechanisms than classical conditioning. 
While the precise mechanisms remain ambiguous, our view is that the surreptitious 
reduction in temperature reinforces expectancies rather than creating specific 
conditioning in the classical sense.  

A meaningful functional distinction between expectancy and conditioning might 
be made by defining conditioning in terms of specific, automatic learning of associations 
between a predictive sensory cue (a conditioned stimulus) and a target brain response 
(an unconditioned response) that occurs proximally in time (26), or a sensory event that 
elicits that response (an unconditioned stimulus). A delay of 500-1000 ms between 
conditioned and unconditioned stimuli may require different brain systems (i.e., 
hippocampus) and awareness (26), implying a different learning process.  Expectancy, 
by contrast, involves deployment of conceptual knowledge to associate a context (which 
may have many features) with a pattern of responding (e.g., opioid release).  The cue 
and response need not be associated proximally in time nor mediated by one specific 
neural pathway.  A version of this distinction in the context of placebo effects is 
presented by Stewart-Williams and Podd (27). Conditioning may or may not elicit 
expectancies, but its defining feature is the specific nature of the associative learning 
and the temporal proximity required for this learning. 



PLACEBO IN OPIOID BINDING, SUPPLEMENT  13 

To consider our expectancy manipulation to be a conditioning procedure, at a 
minimum the conditioned stimulus and unconditioned response should be identified. The 
application of the placebo cream itself could act as a conditioned cue, but not one that 
would create a difference in pain reports: an identical cream is applied in the control 
condition, so the conditioned stimulus is the same for placebo and control conditions.  
What differentiates the conditions is the expectation, imparted verbally by the 
experimenter, that one cream has analgesic properties.  A second variable that 
differentiates the placebo and control conditions is the history of sensory experience on 
placebo- and control-treated sites due to the expectancy manipulation.  For this 
manipulation to induce conditioning, specific sensory cues unique to the placebo-treated 
site would have to be associated with an unconditioned response.  Sensory information 
about the placement of the thermode on the placebo-treated skin could conceivably 
constitute such a cue.  However, the response associated with those cues is one applied 
by the experimenter—the reduction of temperature—rather than any clearly identifiable 
response on the part of the participant.  The unconditioned response could conceivably 
be endogenous opioid release related to the relief caused by the reduction of 
temperature, but this requires several speculative assumptions about the causes of 
opioid release with little data to support them.   

Thus, because the expectation of analgesia is produced by changing the 
stimulus rather than by inducing an endogenous neurochemical response (as is likely in 
drug conditioning studies), the argument that our expectancy manipulation is a 
conditioning procedure is relatively weak.  While we cannot rule out possible 
conditioning, our view is that the cognitive expectancy of reduced pain is primarily 
responsible for the placebo effects we observe, and that the expectancy manipulation 
reinforces these expectancies. Other research has shown that verbal suggestion alone 
produces opioid-dependent placebo effects (28, 29).  In a telling study, verbal 
suggestions were pitted against presentation of stimuli designed to elicit conditioning 
(30).  Expectancies elicited by verbal suggestions dominated potential conditioned 
effects, which were largely absent. 

The following lists describe briefly each of the tables and figures in the Supporting 
Information.  Table notes and figures legends are also provided with tables and figures. 
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