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INTRODUCTION

The complement (C) system is a key component of innate immu-
nity, playing a central role in defence against microorganisms and
in the processing of immune complexes. It is also a powerful drive
to inflammation and can, if unregulated, cause pathology. The last
few years have seen a gradual realization that these events occur
not only in the plasma, with its abundance of C proteins, but also in
the tissues, where plasma C may penetrate poorly or not at all. The
need for a functioning C system at these tissue sites must be met,
either by increased influx of plasma C or by local synthesis. The
purpose of this brief review is to summarize the evidence that C
synthesis occurs at tissue sites and to advance the concept,
suggested by studies in a variety of tissues, that local production
of C is important in tissue homeostasis and immune defence.

SOURCES OF PLASMA C

Components of the classical (C1, C4, C2, C3), alternative (factor
B, factor D, properdin, C3) and terminal (C5, C6, C7, C8 and C9)
pathways of C are all present in plasma at concentrations which
range from as low as 2�g/ml (factor D) to as high as 2 mg/ml (C3).
In the late 1960s, elegant studies of C3 allotypes in individuals
undergoing liver transplantation provided an unequivocal demon-
stration that hepatocytes were by far the major source of plasma C3
[1,2]. The demonstration that plasma C activity and the plasma
concentrations of several C components behaved as acute-phase
reactants, increasing several-fold in response to inflammation,
further implicated the liver as the source of plasma C [3,4].
These studies were extended over the following decade to show
that hepatocytes were primarily responsible for synthesis of most
of the C components in plasma (Table 1). However, there were
some important exceptions. No convincing evidence for hepato-
cyte biosynthesis of the classical pathway component C1q or the
alternative pathway components factor D and properdin could be
found, and the demonstration that C7 alone among the terminal
pathway components was not an acute-phase reactant raised
the possibility that it too might be predominantly synthesized
elsewhere.

The primary source of plasma C1q remains incompletely
resolved. Epithelial cells, fibroblasts and cells of the monocyte/
macrophage lineage have all been shown to synthesize C1qin vitro,

and it is likely that each of these cell types contributes to plasma
C1q [5,6]. Monocytes also synthesize C1r and C1s, assemble and
secrete the complete C1 macromolecule and are the probable
source of the bulk of C1 in plasma. Hepatocytesin vitro also
synthesize C1r and C1s but produce no C1q, and hence cannot
assemble intact C1. The fate of the C1r and C1s molecules
generated by hepatocytes is unclear.

The primary source of plasma factor D is the adipocyte [7,8].
The recognition that the serine protease, termed adipsin, secreted
by adipose tissue, was identical to factor D established an impor-
tant bridgehead between the C system and lipid metabolism which
will be discussed later. Monocytes and macrophages also synthe-
size factor D, but their contribution to plasma levels is likely to be
minor.

Plasma properdin appears to be derived mainly from mono-
cytes and macrophages [9]. Other circulating cells, including
granulocytes and lymphocytes, have been implicated as additional
sources of properdin.

A recent study of C7 allotype switching following liver
transplantation has confirmed the suspicion that C7 is not primarily
derived from hepatocytes [10]. The evidence from this study
indicated that the major sources of plasma C7 are monocytes and
tissue macrophages (including liver Kuppfer cells). Polymorpho-
nuclear leucocytes (PMN) appear to store large amounts of C7 (and
C6), but it is unlikely that these cells contribute much to plasma C
levels [11]. However, release of C components from PMN in the
tissues might be of considerable importance in inflammation.

Monocytesin vitro have been shown to be capable of synthe-
sizing all of the components of C and of generating a haemolytic C
system [12,13]. However, under most conditions the contribution
of monocytes to plasma C (with the exception of the components
noted above) is likely to be minor in comparison with that of the
liver. The contribution of tissue macrophages to local C synthesis
may, however, be of major importance.

LOCAL SYNTHESIS OF C IN TISSUES

The list of cell types which have been shownin vitro to be capable
of synthesizing C components is endless (Table 1). For many of
these cell types, synthesis only occurs under vigorous cytokine
drive, only small amounts of C are produced, and the relevance to
the in vivosituation is dubious. However, there are other situations
where cells generate significant amounts of C, either constitutively
or under cytokine drive, and there is supportive evidence fromin
vivo studies for the importance of locally produced C. The role of
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cytokines in the stimulation of C synthesis has been well reviewed
elsewhere [14,15] and is outside the scope of this review. Here we
will discuss specific examples to illustrate the role of local
production of C.

Synthesis of C in the brain
The brain is a privileged site, tightly shielded from plasma
constituents by the blood–brain barrier (BBB). As a consequence,
plasma C is unlikely to penetrate the brain parenchyma unless the
BBB is disrupted. Given the importance of C in immune defence,
the relative deficiency of C within the brain might predispose to
infection. We and others have set out to examine whether cells in
the brain compensate for this potential deficiency by generating C
components locally.In vitro, astrocytes, the most abundant glial
cell type, can synthesize and secrete all the components of the
classical, alternative and terminal pathways and most of the soluble
regulators of C [16–21]. Some of the components are synthesized
constitutively while others are induced by inflammatory cytokines,
notably interferon-gamma (IFN-). For all the astrocyte-derived C
components, function has been demonstrated. Microglia, cells in
the brain which resemble macrophages, have also been shown to
synthesize C componentsin vitro, although difficulties in culturing
these cells have made it difficult to evaluate this more fully [22].
Evidence for C biosynthesis by astrocytes and microgliain vivo is
now emerging [23–25]. Reactive astrocytes, present in and around
areas of pathology in many inflammatory brain diseases, stain

strongly for C components, indicating that these cells may be
secreting C [23]. Although thein vitro evidence suggests that the
amounts of each component produced by astrocytes are modest in
comparison with the levels generated by hepatocytes on a cell-for-
cell basis, the levels of C attained locally at the inflammatory site
may be high and sufficient to contribute to immune defence at this
site (Fig. 1). C biosynthesis in the brain may also have negative
consequences. Oligodendrocytes and neuronsin vitro are suscep-
tible to killing by autologous C, and destruction of these cell types
by C has been implicated in demyelination and neurodegeneration,
respectively [26,27]. Astrocytes and microglia also express recep-
tors for the complement activation products C3d, C3a and C5a [28–
31]. Activation of locally synthesized C, whatever the initiating
stimulus, will lead to occupancy of these membrane C receptors
which may cause activation of these cell types and a further increase
in C biosynthesis—a positive feedback which may be an important
drive to inflammation in the brain (Fig. 1).

Synthesis of C in the kidney
The kidney performs a vital role in haemofiltration, and as a
consequence is the major site for immune complex deposition in
health and disease. Proper processing of immune complexes is
heavily dependent on the presence of a functioning C system [32].
Evidence that C components are generated locally within the
kidney has emerged from studiesin vitro [33–36] and in vivo
[32,37–40]. Glomerular epithelial, mesangial and endothelial cells
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Fig. 1. C biosynthesis in tissues and roles in local inflammation and defence against pathogens. Blood cells (infiltrating myeloid cells),
macrophages, fibroblasts, epithelial cells, endothelial cells and resident cells (astrocytes, adipocytes, myoblasts, etc.) are all potential
sources of C in the various tissues (brain, fat tissue, muscle, etc.). For most C components in most tissues, constitutive expression is low or
absent. However, following stimulation by cytokines such as IFN- and IL-1� (inflammatory stimulus, 1) cells are activated either to up-
regulate or to expressde novoa full C system. C components and fragments (C1q, C3a, C5a) will bind C receptors (CR) expressed by both
resident and infiltrating cells (see Table 1 for details), causing cell activation and perhaps further enhancing C biosynthesis in an autocrine
manner (2). The level of C components produced locally within the interstitial compartment can be sufficient to be a potent weapon against
pathogens, either through direct killing (3) or through opsonization followed by interaction with CR expressed by resident or infiltrating
cells (4). Many tissue cells can directly activate, in the absence of antibodies, the classical pathway (oligodendrocyte, neurons, etc.) or the
alternative pathway (adipocyte) of C. Local synthesis of C may therefore also have other cellular effects such as (i) cell activation mediated
by sublytic amounts of the membrane attack complex (MAC); (ii) cell activation by C fragment/CR interactions; or even (iii) cell killing
(5). Another negative consequence of C expression in tissues is the utilization by viruses of CR and C regulatory proteins to bind and enter
cells (6). Viruses such as Epstein–Barr virus (EBV), HIV and measles virus can thus establish a reservoir of infection in tissues.



and renal tubular epithelial cells have all been shownin vitro to
synthesize C components either constitutively or under cytokine
drive [33–36]. Synthesis and secretion of each of the components
of the classical and alternative activation pathways have been
demonstrated, but there is no clear evidence for synthesis of
terminal C components. Once inflammation begins, infiltrating
monocytes and macrophages will also contribute to local produc-
tion of C in the kidney. Local synthesis of C may play an important
role in defence of the kidney against invading microorganisms and
might also be involved in renal handling of the physiological or
pathological immune complex loadin vivo. As is the case in the
brain, local synthesis of C might also drive inflammation and
pathology [31,35–40]. An important role for C as a drive to
inflammation has been demonstrated in many animal models of
renal disease and in some human renal diseases. The relative
contributions of locally produced and plasma C to these physiolo-
gical and pathological roles of C in the kidney have not been
established. Sacks and co-workers have proposed to resolve this by
transplantation of normal kidneys to animals deficient in hepatic C
biosynthesis (either naturally occurring or engineered) and of
kidneys from C-deficient animals to normal recipients [41].
These studies should go some way towards defining the importance
of renal C biosynthesis in health and disease. A very recent
investigation using a similar strategy has implicated extrahepatic
C biosynthesis in transplant rejection [42]. C6-deficient rats reject
guinea pig cardiac xenografts slowly in comparison with normal
rats, demonstrating that rejection is C-dependent and involves
assembly of the membrane attack complex (MAC). Livers were
removed from normal rats and replaced with livers from C6-
deficient rats, thus eliminating this source of C6. Rejection of
guinea pig cardiac xenografts occurred at the same rate in these
animals as in normals, indicating that C6 production from extra-
hepatic sources was sufficient to mediate rejection. Bone marrow-
derived cells were implicated as the extrahepatic source of C in
these studies.

Synthesis of C in adipose tissue
Adipose tissue is the primary source of plasma factor D [7,8]. A
role of local C biosynthesis and activation in the regulation of fat
metabolism in adipose tissue was first proposed by Spiegelman and
colleagues [7]. They showed that murine adipocytes generated a
protein termed adipsin, the mouse analogue of human factor D, and
also synthesized the C components C3 and factor B. Further, they
showed that these components provided a functioning alternative
pathway which was spontaneously activated on and around the
adipocytes with the generation locally of C3a. A functional role for
adipsin and this local activation of C was suggested by the
demonstration that expression of adipsin/factor D was reduced in
adipose tissue from obese mice [43]. An independent investigation
of human serum factors capable of stimulating triglyceride synth-
esis in adipocytes by Sniderman and colleagues had identified a
basic protein termed acylation stimulating protein (ASP) [44,45].
Sequence analysis of this protein revealed that it was identical to
human C3adesArg, the product of the action of serum carboxy-
peptidase on C3a. These threads were tied with the demonstration
that human adipocytes also generated C3, factor B and factor D/
adipsin, and locally generated or exogenous C3a triggered
increased triglyceride synthesis in these cells [46,47]. A physiolo-
gical role of this adipsin/ASP system of local synthesis and
activation of C is suggested by the observation that plasma
levels of ASP (C3adesArg) are high in obese subjects and fall

during prolonged fasting, correlating inversely with the rate of
triglyceride mobilization [48]. The data indicate that locally
generated C3a and/or C3adesArg drives triglyceride synthesis in
adipose tissue. Thus, in both human and rodent fat tissue, local
synthesis and activation of C appears to play a central role in lipid
metabolism. It is likely that adipocytes express specific receptors
for C3adesArg and/or C3a, although this remains to be formally
demonstrated. An important coda to this exciting work is that
individuals deficient in C3 do not have gross deficits in adipose
tissue metabolism. It is probable that other signalling systems exist
which can compensate for the (presumed) absence of a functioning
adipsin/ASP system. A proportion of individuals who have circu-
lating C3 nephritic factors (autoantibodies which stabilize the
alternative pathway C3 convertase) do have a deficit in adipose
tissue metabolism, partial lipodystrophy, in which there is a loss of
subcutaneous fat from the face and upper body. Peters and co-
workers have provided evidence that this condition is caused by
interaction of the nephritic factor with locally generated C3
convertases in adipose tissue, leading to uncontrolled activation
of C and adipocyte killing [49].

OTHER ROLES OF LOCALLY GENERATED C

Local ‘priming’ by C
The review so far has focused on the ‘classical’ roles of C in
immune defence and inflammation. However, the auto-activation
cycle described above for adipocytes represents something rather
different. Here the cells are behaving in an autonomous manner,
synthesizing all the necessary components, triggering activation
(through mechanisms which are unresolved) and responding to the
products of that activation through specific receptors—C3a caus-
ing stimulation of triglyceride synthesis. We propose that auto-
activation cycles of this sort are of physiological importance in
many tissues. Local synthesis of C by cells in the tissue is followed
by local activation on or around these cells, which in turn triggers
responses to activation products through specific receptors on the
cell. As well as C3a and C5a, the MAC may also be an important
activator, triggering responses in various tissues [50]. Even if the
levels of C synthesis are modest, high concentrations of activation
products may be generated in the immediate vicinity of the cell,
maintaining a basal state of ‘priming’ and providing a mechanism
for rapid auto-activation. A further example to illustrate the
potential importance of auto-activation is provided by the hepato-
cyte itself. It has recently been demonstrated that receptors for C5a
are present on hepatocytes, and local activation of C in the vicinity
of the cells has been implicated as a major stimulus to the
hepatocyte acute-phase response [51,52].

Hijacking of C by microorganisms
A major role of C is to destroy microorganisms through direct
killing or through recruitment and activation of phagocytes. How-
ever, many microorganisms have evolved strategies to avoid
destruction by C, or even to turn C to their advantage (Fig. 1).
These strategies are beyond the scope of this review, and are well
reviewed elsewhere [53–54]. However, locally synthesized C and
expression of C receptors in the tissues may be important factors in
enabling microorganisms to successfully colonize tissues. Some
microorganisms, including the Epstein–Barr virus (EBV) and the
measles virus, directly use membrane C receptors to enter cells,
hence any tissue which expresses the appropriate C receptors either
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constitutively or during inflammation is a potential target for
infection. Other microorganisms, including the HIV virus and
several bacteria, interact indirectly with C receptors by first
becoming coated with C fragments. Here, local C synthesis and
activation in the tissues could provide a source of C fragments for
coating, thus permitting infection of the cells.

CONCLUDING REMARKS

Plasma C is primarily derived from hepatocytes and fulfils impor-
tant roles in immune defence and immune complex handling in the
plasma. However, penetration of plasma C into tissues is limited by
the large size of the components, particularly at ‘protected’ sites. In
many tissues, locally synthesized C will compensate for this lack of
plasma C. Local biosynthesis of C, spontaneous C activation and
expression of receptors for C activation products in tissues provide
a scenario for auto-activation of cells which has so far been
explored in only a few tissues but may be relevant to homeostasis
in many more.
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