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Backcalculation: Reconstruction of the HIV epidemic 

Backcalculation is a useful technique for estimating HIV prevalence and 

obtaining short-term projections of AIDS incidence based on previous AIDS 

incidence data [1-3]. Whereas the number of AIDS cases is thought to be relatively 

accurately documented in industrialized countries, asymptomatic HIV infections are 

seldom noticed unless the infected individual undertakes a voluntary blood test or 

develops the disease. The long incubation period of HIV infection enables assessment 

of the extent of the epidemic during its course. Backcalculation uses AIDS incidence 

data at time t, a(t), and the incubation period distribution at time τ after infection, ω(τ), 

to reconstruct the number of HIV infections with time. Assuming that documentation 

of diagnosed AIDS cases is not significantly delayed, and assuming the impact of 

antiretroviral therapy on the length of the incubation period is negligible in the 

simplest setting, the fundamental relationship is given by the following convolution 

equation: 
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where h(u) is the number of HIV infections at time u. The basic idea of 

backcalculation is to obtain h(u) using a(t) and ω(τ-u). Here, to ease understanding of 

the deconvolution procedure, eqn. (1) is considered in discrete time [4,5]. Since 



 - 2 - 

surveillance-based data of AIDS incidence is obtained for a certain interval, t (e.g., 

every 2 or 3 months), the following equation is obtained: 
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Assuming that ht is generated by a nonhomogeneous Poisson process, at is an 

independent Poisson variate. Thus, the likelihood, which is needed to estimate HIV 

infections and the parameters of incubation period distribution, is proportional to: 
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where rt is the observed number of AIDS cases at time t and T is the most recent time 

of observation. The shape of the curve of HIV infections, ht, is usually modeled 

parametrically or non-parametrically. The main sources of uncertainty arise from 

uncertainties in the incubation period distribution, the shape of the HIV infection 

curve, and AIDS incidence data [6]. Short-term predictions are obtained based on 

estimated numbers of HIV infected individuals who have not yet developed AIDS. 

However, it should be noted that backcalculation such as this provides no information 

about future infection rates and little information about recent infection rates [7]. 

Further details of the backcalculation method are described elsewhere [8-10]. 

 

The prediction method employed in the United States case study 

In the United States case study, future predictions of AIDS incidence based on 

the annual number of AIDS diagnoses from 1981-7 were estimated using the second 

ratio of incidence, which reflects the annual incidence of AIDS (see Table S1). That is, 

empirically, assuming that the second ratio of AIDS incidence is constant, and thus, 

the epidemic curve suffices to fit a normal curve, the first ratio and future AIDS 
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incidence can subsequently be obtained arithmetically [11]. In the original study [12], 

the fixed second ratio was determined as 0.8647 using the mean ratio from 1985-7; 

Table 1 also follows this estimate. 

Farr’s law was formalized in detail by John Brownlee (1868-1927) [13] who, 

based on the observational notes of Farr on the temporal pattern of smallpox death, 

showed that epidemics in general tend to follow a symmetric bell-shaped curve that 

can be approximated by normal distribution [14,15]. The major aim of Brownlee in 

extending this theory was to further investigate the time-series decline of transmission 

potential (i.e., infectiousness) during the course of an epidemic, which he failed to do 

(excellent historical reviews of Brownlee’s efforts are given elsewhere [16,17]). 

Assuming that the second ratio of AIDS incidence, which reflects the annual 

incidence, is constant over time, the following fundamental equation is obtained: 
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where at and C are the AIDS incidence at time-interval t and the assumed constant 

second ratio, respectively. Brownlee found that eqn. (4) can also be described by the 

second differences of the following logarithms: 
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When lna = A the above equation can be expressed by: 
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Thus, the solution to eqn. (6) can be obtained from the integral: 

2( ) exp( ).a t At Bt D= − + += − + += − + += − + +    (7) 

In other words, a negative second-degree exponential function, which describes a type 

of normal distribution, is obtained [13,16,17]. 
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A theoretical flaw of the AIDS projection in the United States 

The most significant flaw lies in the underlying theory. Provided that the 

assumption of a normal distribution had been empirically confirmed for other 

infectious diseases [18] and that functions similar to those given in eqn. (7) are 

frequently assumed for the infection rate of HIV even in recent backcalculation 

methods, the technical problems in HIV/AIDS-specific intrinsic dynamics might have 

been justifiable during the 1980s. The flaw is concerned with the reason why a 

symmetric bell-shaped curve could be assumed for the epidemic curve. Farr and 

Brownlee could not clarify the mechanism behind the normal curve according to the 

underlying infection process [11,15,16], and consequently, Bregman and Langmuir 

adopted an assumption not clarified in the explicit bottom-up fashion [12]. 

If a symmetric bell-shaped curve was needed, a susceptible (S)-infectious (I)-

removed (R) model (an SIR model), one of the most widely used assumptions based 

on the work by Kermack and McKendrick [19], could have been used based on the 

mass action principle firstly suggested by Hamer [20,21]. The basic differential 

equations describing the population dynamics of an epidemic are given by: 
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where β and γ are the infection and removal rates, respectively. Assuming the 

epidemiology of HIV/AIDS, I(t) and R(t) are the number of HIV infections and AIDS 

cases at time t (note: strictly speaking, the simple mass action principle is likely 

inappropriate for HIV/AIDS). Thus, the epidemic curve, i.e., AIDS incidence, is given 
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by the solution of dR(t)/dt. Here, to clearly show the analytical results, the incubation 

period of HIV is assumed to follow an exponential distribution with the mean γ -1 and 

β assumed to be independent of time. Replacing I(t) in the first subequation with the 

third, we have: 
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Integrating eqn. (9) from 0 to t yields: 
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where R(0) = 0. Assuming that the total number of individuals in the population is 

constant N = S(t) + I(t) + R(t) for any t, the third subequation of eqns. (8) can be 

written as: 
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Approximation of eqn. (11) by Taylor series expansion yields: 
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This can be solved by standard methods [22] yielding: 
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Therefore, the epidemic curve is given by: 
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generating a symmetrical bell-shaped epidemic curve. In this way, the epidemic curve 

obtained using the Kermack and McKendrick model results in a symmetric shape, 
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reflecting the decline of susceptible individuals (when β is constant over time). This 

indicates that the underlying epidemiologic process of the epidemic curves described 

by normal family (i.e., those which can be generalized with a type of normal 

distribution) partly originates from these non-linear dynamics. Bregman and 

Langmuir’s study on the projection of HIV/AIDS in the United States [12], which 

simply applied the original historical theory to the data, did not validate the 

underlying intrinsic transmission dynamics using firm knowledge. In other words, 

they did not take into account the reason behind the assumption of a normal curve. 

 

A technical flaw of the fixed coverage ratio employed in the Japan case 

study 

Here I analytically examine the validity of applying the fixed coverage ratio to 

estimates of the true HIV incidence in Japan. Fig. S1 shows a schematic illustration of 

the four compartments required for this analysis. New HIV infections join 

compartment hu, undiagnosed HIV infections, as a function of time t, η(t). 

Undiagnosed HIV-infected individuals develop AIDS at a rate of γ1 and are diagnosed 

at a rate of α (and enter compartment hd, diagnosed HIV infections). Diagnosed HIV 

individuals develop AIDS at a rate of γ2. This simple model is described by the 

following differential equations: 
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where γ1 and γ2 are unrealistically assumed to follow exponential distributions, a 

simplification that allows us to find the analytical solution. In the following analysis, 

the disease age (i.e., time since HIV infection) is ignored, and diagnosed and 

undiagnosed individuals are assumed to develop AIDS at the same rate, γ (= γ1 = γ2). 

However, it should be noted that it is preferable to take into account the disease age 

(known as the d-state [23]) with slowly progressing diseases such as HIV/AIDS; 

analysis taking into account disease age is given elsewhere [24]. The rate of diagnosis, 

α, is assumed to be sufficiently small compared to γ and independent of time so that 

the coverage ratio in the original study in relation to time could be analytically 

obtained. Reporting delays and delayed onset of disease with antiretroviral therapy is 

also ignored for simplicity. In order to model the increase in new HIV infections in 

the simplest theoretical form, and based on the results of discrete backcalculation 

numerically developed for the purpose of introducing the concept into Japan [25], the 

time-dependent function of new HIV infections, η(t), was assumed to follow a simple 

exponential function: 

0( ) exp( ).t tη η ρ====    (16) 

Then, the analytical solution of eqn. (15) is given by the following: 
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Thus, the ratio of HIV and AIDS diagnoses at time t is given as follows: 
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Here, the coverage ratio adopted in the above Japanese studies is given by ad(t)/au(t), 

which was believed to approximate {hd(t)+ ad(t)}/ {hu(t)+ au(t)}; however, they were 

shown to be analytically unequal (i.e., Hd/Hu ≠≠≠≠ Ad/Au). Fig. S2a shows the time-

dependent variation in the coverage ratio (based on previous diagnoses of AIDS 

cases) and the ratio of diagnosed HIV infections (including those who developed 

AIDS) assuming a constant diagnosis rate and exponential increase in HIV with time. 

Both ratios varied widely according to time (i.e., they were not independent of time) 

and, reflecting this, the coverage ratio in actual observations has been floated and 

revised several times [26-30]. The relationship between Hd/Hu and Ad/Au is examined 

by various rates of diagnosis at time t = 7 [years] in Fig. S2b. It should be noted that 

even a slight difference in these ratios could result in significantly biased estimates of 

the true HIV incidence (or prevalence), since the estimate applies to the nationwide 

level. Moreover, previous mathematical analysis taking into account the d-state has 

claimed that the two ratios are not even approximately equal [24]. Thus, the coverage 

ratio used above should not be used to estimate the true HIV incidence and prevalence. 
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Tables 

Table 1 - Annual AIDS incidence in the United States from 1981-2003 and the 

predicted number of cases obtained based on a normally distributed epidemic 

curve 

Year of 
diagnosis 

Observed no. of 
cases

†
 

Predicted no. of 
Cases

‡
 

First ratio Second ratio 

1981 323 - - - 

1982 1170 - 3.6223 - 

1983 3076 - 2.6291 0.7258 

1984 6247 - 2.0309 0.7725 

1985 11794 - 1.8879 0.9296 

1986 19064 - 1.6164 0.8562 

1987 28599 - 1.5002 0.9281 

1988 35508 37098 1.2972 0.8647
‡
 

1989 42768 41612 1.1217 0.8647 

1990 48732 40360 0.9699 0.8647 

1991 59760 33850 0.8387 0.8647 

1992 78705 24548 0.7252 0.8647 

1993 78954 15394 0.6271 0.8647 

1994 72266 8347 0.5422 0.8647 

1995 69307 3914 0.4689 0.8647 

1996 60613 1587 0.4054 0.8647 

1997 49062 556 0.3506 0.8647 

1998 41605 169 0.3032 0.8647 

1999 41356 44 0.2621 0.8647 

2000 41267 10 0.2267 0.8647 

2001 40833 2 0.1960 0.8647 

2002 41289 0 0.1695 0.8647 

2003 43171 0 0.1465 0.8647 

Total 915469 277765   

 
† 

Observed total number of AIDS cases in the United States. Data source: refs. [31,32]. 

‡
Predicted number of cases based on observed cases from 1981 through 1987. The 

constant ratio, 0.8647, is equivalent to the value adopted in ref. [12]. 
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Figures 

 

Figure S1 - Compartments used to determine the rate of new HIV infection, 

diagnosis and progression to AIDS 

 

 

 

New HIV infection occurs as a function of time, η(t). Undiagnosed HIV-infected 

individuals, hu, develop into AIDS at a rate of γ1 and are diagnosed at a rate of α 

(entering compartment hd, diagnosed HIV infections). Diagnosed HIV individuals 

develop AIDS at a rate of γ2. The coverage ratio employed in the Japan case studies 

was obtained from ad/au. 
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Figure S2 - Comparative distributions of the coverage ratio of AIDS (ad/au) and 

the ratio of diagnosed / undiagnosed HIV infections (ad +hd/ au+hu) 

 

 

 

a) Temporal distributions of the coverage ratio and the ratio of diagnosed / 

undiagnosed HIV infections. The diagnosis rate, α, was fixed as 0.05 [year
-1

] over 

time. The incubation period of AIDS was assumed to follow an exponential 

distribution with a mean of 10 [years] (= γ-1
). The values of η0 and ρ were 111.0 and 

0.273, as adopted from ref. [33]. b) Sensitivity of the estimated ratios (at time t = 7 

[years] since the start of the epidemic) to the different true diagnosis rate, α. Other 

parameters were set as given in a. 

 


