CRYSTALLINE EXCREMENTS IN BRONCHITIS AND CHOLECYSTITIS OF MICE

YONG H. YANG, M.D., PH.D., AND JAMES S. CAMPBELL, M.D.

From the Department of Pathology, Faculty of Medicine, University of Ottawa, and Ottawa General Hospital, Ottawa, Canada

Haaland¹ described crystals in mouse tissues in 1905 and Tyzzer² photographed crystals in mouse lung in 1909. In 1942, Green³ described extracellular and intracellular crystals in mouse lungs, in the acinic cells of the pancreas, in the lumens of endometrial glands and in a sarcoma of the thigh. In 1952 Horn, Congdon, Eschenbrenner, Andervont and Stewart⁴ noted small crystals in mononuclear cells of pneumonitis in two mice with pulmonary adenomatosis. These crystals were usually noted incidentally and their nature has not been established. We present a histologic and histochemical study of similar crystals found in chronic cholecystitis and bronchitis in 6 of 381 mice utilized in experiments concerned with chemical carcinogenesis.^{5,6}

MATERIAL AND METHODS

The experimental mice were ICR Swiss or phenotypically normal pituitary dwarf strain virgin females. Two hundred and seven mice had been treated by 20-methylcholanthrene (MC), 0.5 per cent in acetone in bi-weekly intravaginal applications totalling 0.2 to 1.1 ml. of carcinogen solution. Controls consisted of the same strains; 154 were acetone-treated, 10 were saline-treated and 10 were untreated. The 6 mice with crystals lived full life spans or were sacrificed in the course of long-term observations; in each of them complete necropsy was performed (Table I). Formalin-fixed viscera and lymph nodes of various regions were embedded in paraffin, cut at 3 μ and stained with hematoxylin, phloxine, and saffron (HPS). Paraffin sections containing crystals were stained by various techniques (Table II). Frozen sections of lungs were stained with Sudan III and oil red O for lipids and by the Schultz method for cholesterol and cholesterol esters. Sections of fresh and 10 per cent formalin-fixed tissues, stained and unstained, were examined by polarized, ultraviolet and blue light.

X-ray diffraction and electron microanalysis were not employed in this study. The examination of the crystals by these techniques is intended as a future project.

Observations

Experimental and necropsy data in the 6 mice exhibiting crystals are tabulated (Table I). Lungs in 2 mice were firm and had multiple fine nodularities with gray-white centers and yellow peripheries. Microscopically, bronchioles and bronchi had lymphocytic and plasma cell infiltrates in and about their walls. Peribronchial alveoli were filled by

This work was supported by a grant of the National Cancer Institute of Canada. Accepted for publication, March 27, 1964.

RYSTALS	Accompanying lesions	None	None	Liver abscess	Bilateral acute bronchopneumonia; suppurative parametritis; pyo- metria	Papilloma of vagina; epithelial dysplasia of cervix uteri	Bilateral acute bronchopneumonia; <i>Klossiella muris</i> infection of kidneys
SUMMARY OF EXPERIMENTAL DATA AND NECROPSY FINDINGS IN 6 MICE WITH C	Distribution of extrapulmonary lesions with crystals	Gallbladder	None	Gallbladder	Gallbladder	Gallbladder	Gallbladder
	Distribution of pulmonary lesions with crystals	Left lung Right lung (mid. and inf. med. lobes)	Right lung (except inf. lat. lobe) Left lung	None	None	None	None
	Period of observations (days)	250	220	300	480	400	767
	Treatment (vaginal)	Acetone 10 appl.	Acetone 10 appl.	Acetone 10 appl.	Acetone 10 appl.	MC * in acetone 10 appl.	None
	Age (days)	340	310	390	570	490	767
	Strain	ICR Swiss	ICR Swiss	Pituitary dwarf	Pituitary dwarf	ICR Swiss	Pituitary dwarf
	Mouse	н	a	б	4	<u>م</u> ر	ø

TABLE I

338

YANG AND CAMPBELL

* Methylcholanthrene

large, prominently striated histiocytes with abundant acidophilic cytoplasm (Fig. 1). Acidophilic crystals, sometimes in histiocytes, were present in bronchial lumens or peribronchial alveoli (Fig. 2). Some bronchial epithelial cells were nearly twice as large as usual, with brightly acidophilic cytoplasm (Fig. 3). In one mouse, a hilar lymph node contained striated histiocytes and intracellular crystals.

Gallbladders in 3 mice had prominent lymphocytic infiltrates. Marked fibrosis was found in 2 mice. Fibrosed gallbladders had eroded mucosa and lumens packed with acidophilic crystals. Gallbladders with prominent lymphocytic infiltrates contained fewer crystals but had enlarged mucosal epithelial cells with markedly acidophilic cytoplasm, occasionally ballooned as though preparatory to secretion (Figs. 4 and 5).

In accord with Green's observations,³ the crystals were soft enough to cut in paraffin blocks, were insoluble in alcohol, acetone, ether and xylene, but were soluble in water adjusted to pH 1 to 2 or pH 11 to 12. They were needle- or rod-shaped, rectangular or polygonal (Text-fig. 1).

TEXT-FIG. 1. Outline drawings of crystals to illustrate variety of shapes.

They measured from 10 to 127 μ in length and from 1 to 55 μ in width. Birefringence was slight and, in ultraviolet and blue light, fluorescence was faint. Histologic and histochemical findings are tabulated (Table II, Figs. 6 to 8).

Acidophilic epithelial cytoplasm gave the same histologic and histochemical staining reactions as the crystals. The abnormal cytoplasm did not stain for mucins and reacted in negative manner with benzidine, but YANG AND CAMPBELL

did stain with amidoblack and reacted in positive fashion with the Hartig-Zacharias ferrocyanide technique for protein.⁷ Normal bronchial and gallbladder epithelial cytoplasm stained for mucins and was negative with amidoblack and the Hartig-Zacharias technique. Except for positive results with the periodic acid-Schiff reaction and with Gomori's tech-

Staining methods	Results
Alcian blue	Negative
Amidoblack for hemoglobin	Light to dark blue
Aniline blue	Red
Benzidine	Negative
Congo red	Light yellow
Gmelin's reaction for hematoidin	Negative
Gomori's iron reaction	Negative
Hartig-Zacharias ferrocyanide reaction for protein	Blue
Hematoxylin and eosin	Eosinophilic
Hematoxylin, phloxine and saffron	Phloxinophilic
Masson's trichrome	Acid fuchsinophilic
Mayer's mucicarmine	Negative
Methylene blue	Negative
Methyl green-pyronine for DNA and RNA	Pyroninophilic
Methyl violet	Blue-violet
Oil red O	Negative
Periodic acid-Schiff (McManus)	Negative
Phosphotungstic acid-hematoxylin (Mallory's)	Blue-purple
Schultz method for cholesterol and cholesterol esters	Negative
Sudan III	Negative
Toluidine blue	Blue
von Kossa stain for calcium	Negative

TABLE II STAINING REACTIONS OF CRYSTALS AND ACIDOPHILIC EPITHELIAL CYTOPLASMS

The staining reactions of crystals and acidophilic epithelial cytoplasm were identical.

nique for iron, the cytoplasm of histiocytes in crystal-bearing lungs stained the same as the abnormally acidophilic epithelial cytoplasm.

DISCUSSION

The crystals appeared to contain protein,⁷ and their pyroninophilia was equated with RNA content.⁸ Despite affinity for amidoblack stain,⁹ the crystals appeared not to contain hemoglobin, for reaction to benzidine was negative and unstained crystals were colorless.¹⁰ Gmelin's reaction for hematoidin and methylene blue staining for bilirubin were also negative.^{11,12} Exposure to methylcholanthrene was evidently unrelated to crystal formation. As a haptene, acetone might lead to production of abnormal crystallizing antibodies, but one of the mice reported here was an untreated control. The crystals were unlike Charcot-Leyden crystals.⁸

The crystals may be products of the abnormal epithelium in the company of which they occur, because the acidophilic cytoplasm of the ab-

340

normal epithelial cells stains and reacts the same as the crystals with a variety of techniques (Table II). RNA-containing "differentiated secretion" of cultivated chick embryo tissue described by Rose¹³ may be an analogous tissue product, and Griffin¹⁴ has demonstrated that similar crystals occur as nitrogenous excretory products in *Chaos chaos* and other large amebas. We postulate that, in chronic inflammations in bronchi or gallbladders in our 6 mice, RNA and protein-containing products of bronchial and gallbladder epithelium crystallized interstitially and intraluminally, and was to some extent phagocytosed by histiocytes. Intra-epithelial inclusion bodies were absent, but the mononuclear inflammatory infiltrates and the positive staining for RNA in abnormal epithelial cells and crystals hint at the occult participation of a virus.

Summary

Crystals apparently containing protein and RNA occurred in chronic bronchitis and cholecystitis of mice. We postulate that the crystals were products of abnormal epithelium.

References

- I. HAALAND, M. Les tumeurs de la souris. Ann. Inst. Pasteur, 1905, 19, 165-201.
- TYZZER, E. E. A series of spontaneous tumors in mice with observations on the influence of heredity on the frequency of their occurrence. J. Med. Res., 1909, 21, 479-518.
- 3. GREEN, E. U. On the occurrence of crystalline material in the lungs of normal and cancerous Swiss mice. Cancer Res., 1942, 2, 210-217.
- 4. HORN, H. A.; CONGDON, C. C.; ESCHENBRENNER, A. B.; ANDERVONT, H. B., and STEWART, H. L. Pulmonary adenomatosis in mice. J. Nat. Cancer Inst., 1952, 12, 1297–1315.
- 5. YANG, Y. H. Dysplasia and carcinoma of the uterine cervix and vagina in mice and rats. A thesis presented to the University of Ottawa in partial fulfilment of the requirements of the degree of Doctor of Philosophy, April, 1963.
- 6. YANG, Y. H., and CAMPBELL, J. S. Induced dysplasia and carcinoma of the uterine cervix and vagina in mice. (In preparation)
- 7. GOMORI, G. Microscopic Histochemistry, Principles and Practice. University of Chicago Press, Chicago, 1952, p. 112.
- 8. CULLING, C. F. A. Handbook of Histopathological Technique. Butterworth & Co., London, 1957, pp. 197-199.
- 9. PUCHTLER, H., and SWEAT, F. Amidoblack as a stain for hemoglobin. Arch. Path., 1962, 73, 245-249.
- 10. KARSNER, H. T. Human Pathology. J. B. Lippincott Co., Philadelphia, 1955, ed. 8, p. 29.
- 11. CULLING, C. F. A. Handbook of Histopathological Technique. Butterworth & Co., London, 1957, pp. 267–268.
- 12. PEARSE, A. G. E. Histochemistry, Theoretical and Applied. J. & A. Churchill, Ltd., London, 1953, pp. 358-359.
- 13. Rose, G. G. Biologic crystals and particles produced in tissue culture. Cancer Res., 1963, 23, 279-284.

Aug., 1964

 GRIFFIN, J. L. Quoted by ALLEN, R. D. Amoeboid Movement. In: The Cell; Biochemistry, Physiology, Morphology. BRACHET, J., and MIRSKY, A. E. (eds.). Academic Press, Inc., New York and London, 1961, Vol. 2, Chapt. 3, pp. 135-216.

LEGENDS FOR FIGURES

- FIG. 1. Aggregations of histiocytes in pulmonary alveoli. The needle-shaped striations in the cytoplasm of histiocytes are demonstrated. Mallory's phosphotungstic acid hematoxylin stain. \times 620.
- FIG. 2. Crystals and histiocytes in the lung. Both crystals and histiocytes are deeply stained with phloxine. Hematoxylin, phloxine and saffron stain. \times 225.
- FIG. 3. Acidophilic bronchial epithelium and crystals in a bronchial lumen. Some bronchial epithelial cells are filled with acidophilic material which gives staining reactions identical to those of crystals. Arrows indicate crystals and bronchial epithelium with abnormal cytoplasm. The bronchial wall is infiltrated by lymphocytes and plasma cells. Aniline blue stain. × 180.
- FIG. 4. Crystals in the lumen of a gallbladder. Many crystals are stained intensely (red). Mallory's aniline blue stain. \times 65.

- FIG. 5. Ballooning of gallbladder epithelium (arrows). Crystals in the lumen (enclosed in square) are seen on the bottom. Hematoxylin, phloxine and saffron stain. \times 370.
- FIG. 6. Crystals are stained with pyronine, a finding equated with RNA content. Methyl green-pyronine stain. \times 180.
- FIG. 7. Crystals and histiocytes in the lung. A positive iron reaction in histiocytes is shown at the upper right corner while crystals in the lower left corner of the field do not react. Gomori's technique for iron. \times 225.
- FIG. 8. Crystals and bronchial epithelium give a positive reaction for protein by the ferrocyanide method of Hartig-Zacharias.⁷ \times 180.

