Detailed materials and methods

Plasmid constructs. The ORCA3 promoter (accession number AJ251250) was PCR with OR5 (5'isolated by inverse primers AGATCTCATATGTCCGAAGAAACTATTTCCGTCTCAG-3') and OR8 (5'-GATGAATAGAGTGAGGAGTGG-3') on EcoRI-digested and re-ligated genomic DNA. The ORCA3 promoter fragment generated on genomic DNA by PCR was cloned into pGEM-T Easy (Promega) such that the OR8 sequence flanked the SP6 side of the polylinker. An EcoRI fragment containing the ORCA3 promoter from positions -826 to -53 relative to the ATG codon (AJ251250) was transferred to GusXX (Pasquali et al., 1994) to generate the plasmid △826GusXX. ORCA3 5' promoter deletion fragments $\triangle 606$, $\triangle 190$ and, $\triangle 88$ were generated by PCR on ∆826GusXX ∆606 (5´plasmid using primers CGTCTAGAAAATACACTATCTAAACAT-3'), ∆190F (5′-AACTGCAGTAATTGCACCTCCCAAGCGC-3') and $\Delta 88$ (5-AACTGCAGCTTAGTATATAAATTCCACTC-3'), respectively, combined with the GUS3 primer (5'-CTGAATGCCCACAGGCCGTCGAG-3'). The PCR fragments were cut with Xbal/EcoRI, Pstl/EcoRI and Pstl/EcoRI, respectively, and cloned into GusXX. ORCA3 5' promoter deletion fragments \triangle 354, \triangle 264 and \triangle 121 were isolated by digestion of the ∆826 ORCA3 promoter with Dral/EcoRI, SnaBI/EcoRI and Sspl/EcoRI, respectively, and the appropriate fragments were cloned into GusXX digested with Smal/EcoRI. ORCA3 internal promoter deletion 264¹ was generated by PCR with primers ∆190R (5′-GAAGATCTGTCACGTTTACACAGAATTAA-3') and T3 on plasmid $\triangle 264$ - GusXX. The PCR product was cut with BgIII/BamHI/Sacl, and a 75 bp BamHI/BgIII fragment was cloned into Δ 121GusXX digested with BamHI. To generate 264 Δ 2, a 145 bp BamHI/SspI fragment was cloned into Δ 88GusXX digested with BamHI/Smal. To generate 264₄3, a PCR product produced with primers \triangle 190F and GUS3 on \triangle 826GusXX was cut with Avall, filled in with the Klenow fragment of DNA polymerase I and cut with EcoRI. The resulting 125 bp fragment was cloned into GusXX digested with EcoRI/Smal generating △162GusXX. Fragment A was excised with BamHI/BgIII from pIC19H-A (see below) and cloned into $\Delta 162$ GusXX, resulting in 264 $\Delta 3$ GusXX. To construct 264 Δ 4, a 230 bp fragment obtained by cutting Δ 264GusXX with Sacl/EcoRI was cut with Avall, filled in with the Klenow fragment of DNA polymerase I and cut with BamHI. The resulting 110 bp fragment was cloned into pIC-19H (Marsh et al., 1984) digested with BamHI/EcoRV. A BamHI/BgIII fragment excised from this plasmid was cloned into Δ 121GusXX cut with BamHI, resulting in 264 Δ 4GusXX. A 6Tcyt fragment was isolated from 6TcytGusSH-47 (Menke et al., 1999) with BamHI/PstI and cloned into △88GusXX to generate the control construct 6Tcyt-△88GusXX. ORCA3 promoter fragment A was generated by PCR with primers Δ 190R and T3 on plasmid Δ 264GusXX. The PCR fragment was cut with BgIII/BamHI/Sacl, and a 75 bp BamHI/BgIII fragment was cloned in pIC-19R digested with BamHI/BgIII. To generate fragment B, a BamHI/Sall fragment was isolated from Δ 190GusXX, cut with Sspl, and the 85 bp BamHI/Sspl fragment was cloned into pIC-19H digested with BamHI/EcoRV. To generate fragments C and D, Sspl/Ddel and Avall/Ddel fragments, respectively, were isolated from Δ190GusXX, filled in with the Klenow fragment of DNA polymerase I and cloned into pIC-20H digested with EcoRV/Smal such that the Ddel half-sites flanked the Smal half-site. Fragments were tetramerized according to Ouwerkerk and Memelink (1997) using the enzyme combination BamHI/BgIII. Tetramers 4A and 4B were cloned as BamHI/XhoI fragments into GusSH-47 (Pasquali et al., 1994) digested with BamHI/SaII. Tetramers 4C, 4D and its mutant derivatives were cloned into GusSH-47 as SacI/BamHI fragments. *ORCA3* promoter-*GUS* fusions were transferred from the GusXX plasmid to the binary vector pMOG22λCAT (Menke et al., 1999) as XbaI/XhoI fragments, whereas the tetramer-GUS fusions and 6Tcyt-Δ88Gus were transferred with SacI/HindIII. For the AT-hook overexpression constructs, the inserts of clones 2D38M, 2D7 and 2D173 were excised with BamHI/BgIII, BamHI/XbaI or EcoRI/XbaI and cloned in expression vector pRT101 (Töpfer et al., 1987) digested with BamHI, BamHI/XbaI or EcoRI/XbaI.

Cell transformation. *C. roseus* cell line BIX was transformed using *Agrobacterium tumefaciens* strain LBA4404 containing the ternary plasmid pBBR1MCS-5 carrying the constitutive *VirGN54D* mutant gene and *ORCA3* promoter derivatives in pMOG22 λ CAT as described (van der Fits et al., 2000). Cell suspension cultures were grown as described (Menke et al., 1999)

RNA extraction and Northern blot analysis. RNA extraction and Northern blot analysis were performed as described before (Menke et al., 1999). Northern blots

3

were probed using ³²P-labeled DNA probes corresponding to the full-length *ORCA3*, *GUS* and *CAT* coding regions or the complete *AT-hook* and *Rps9* (encoding ribosomal protein S9) inserts.

Yeast one-hybrid screening A monomer and a dimer of the D fragment and a tetramer of the C fragment were cloned as BamHI/BgIII fragments from pIC-20H into the BamHI site of pHIS3NX (Meijer et al., 1998). Gene fusions of 1D-, 2Dand 4C-HIS3 were transferred as Notl/Xbal fragments to pINT1 (Meijer et al., 1998). The resulting plasmids were digested with Ncol/Sacl and introduced into yeast strain Y187 (Harper et al., 1993). Recombinants were selected on YPD medium containing 200 µg/ml G418, and the occurrence of double cross-over integration events between the pINT1 derivative and the chromosomal PDC6 locus was verified via Southern blot analysis. To construct the library from MeJAtreated cells, cDNA was synthesized with a Stratagene HybriZAP-2.1 XR kit on poly(A) RNA prepared from 2 different total RNA samples, mixed in a 1:1 ratio, isolated from cultures of cell suspension line MP183L that were treated with 50 µM MeJA for 0.5 and 2 h, respectively. The amplified lambda HybriZAP-2.1 library, consisting of 4 x 10⁶ independent primary transformants, was converted to a pAD-GAL4-2.1 plasmid library according to the manufacturer's instructions.

Electrophoretic Mobility Shift Assays

The inserts from pAD2D81, pAD2D206, pAD2D21, pAD2D328, pAD2D1 and pAD2D7 were isolated with BamHI/XhoI, and cloned in pGEX-KG (Guan and

Dixon, 1991). The insert from pAD2D449 was isolated with EcoRI/Xhol, and cloned in pGEX-4T1 (GE Healthcare). The insert from pAD2D173 was amplified (5'-PCR by with the primers AD173ATG GGAATTCAAAATGGATCATTCACTACCACCTC-3') and 3AD2, digested with EcoRI/XhoI, and cloned in pGEX-4T1. The inserts of clones pACT-4C19, 4C32, 4C49 and 4C87 were cloned in pGEX-KG with Smal/Xhol, EcoRI/HindIII, Smal/Xhol and EcoRI/Xhol, respectively. Expression plasmids were introduced in E. coli strain BL21 (DE3) pLysS or its derivative Rosettagami B. D wild-type and mutant fragments were isolated from pIC-20H with Xbal/Xhol and labeled by filling in the overhangs with the Klenow fragment of DNA polymerase I and α -³²PdCTP. EMSAs were performed as previously described (Menke et al., 1999).

References

Guan, K. L. & Dixon, J. E. (1991) Anal. Biochem. 192, 262-267.

- Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. (1993) *Cell* **75**, 805-816.
- Marsh, J.C., Erfle, M. & Wykes, E.J. (1984) Gene 32, 481-485.
- Meijer, A. H., Ouwerkerk, P. B. F. & Hoge, J. H. C. (1998) Yeast 14, 1407-1416.
- Menke, F. L. H., Champion, A., Kijne, J. W. & Memelink, J. (1999) *EMBO J.* **18**, 4455-4463.

Ouwerkerk, P. B. F. & Memelink, J. (1997) *Trends Genet.* **13**, 207.

- Pasquali, G., Ouwerkerk, P. B. F. & Memelink, J. (1994) Gene 149, 373-374.
- Töpfer, R., Matzeit, V., Gronenborn, B., Schell, J. & Steinbiss, H.-H. (1987) *Nucl. Acids Res.* **15**, 5890.
- van der Fits, L., Deakin, E. A., Hoge, J. H. C. & Memelink J. (2000) *Plant Mol. Biol.* **43**, 495-502.