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Summary

Recent interest in atherosclerosis has focused on the ge-
netic determinants of low-density lipoprotein (LDL) par-
ticle size, because of (i) the association of small dense
LDL particles with a three-fold increased risk for coro-
nary artery disease (CAD) and (ii) the recent report of
linkage of the trait to the LDL receptor (chromosome
19). By utilizing nonparametric quantitative sib-pair and
relative-pair-analysis methods in CAD families, we
tested for linkage of a gene or genes controlling LDL
particle sizes with the genetic loci for the major apolipo-
proteins and enzymes participating in lipoprotein metab-
olism. We confirmed evidence for linkage to the LDL
receptor locus (P = .008). For six candidate gene loci,
including apolipoprotein(apo)B, apoAll, apo(a), apoE-
CI-CI, lipoprotein lipase, and high-density lipoprotein-
binding protein, no evidence for linkage was observed
by sib-pair linkage analyses (P values ranged from .24
to .8 1). However, in addition, we did find tentative evi-
dence for linkage with the apoAI-Ci-AIV locus (chro-
mosome 11) (P = .06) and significant evidence for link-
age of the cholesteryl ester transfer protein locus
(chromosome 16) (P = .01) and the manganese superox-
ide dismutase locus (chromosome 6) (P = .001), thus
indicating multilocus determination of this atherogenic
trait.

Introduction

Low-density lipoproteins (LDLs) are the major choles-
terol-carrying lipoproteins in plasma. Elevated plasma
LDL cholesterol level has been shown to be a major risk
factor for coronary artery disease (CAD) (Kannel et al.
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1971; Brown and Goldstein 1986; Castelli et al. 1986).
It is well established that human plasma LDL varies in
size, density, and lipid content (Adams and Schumaker
1969; Fisher et al. 1975; Krauss and Burke 1982). Multi-
ple, discrete subclasses of LDL particles have been iden-
tified and characterized using density gradient ultracen-
trifugation and gradient-gel electrophoresis (Lindgren et
al. 1972; Shen et al. 1981; Krauss and Burke 1982).
Previous studies have suggested that there is up to a
threefold higher risk of myocardial infarction for indi-
viduals with the phenotype that has been termed LDL
subclass pattern B, characterized by a predominance of
small, dense LDL particles, when compared with sub-
jects with larger LDL particles (subclass pattern A) (Aus-
tin et al. 1988a, 1990b). Recent studies have also shown
that the dense LDL particles are more susceptible to
oxidation (de Graaf et al. 1991; Tribble et al. 1992).
Although certain diets may also influence LDL particle
size (Campos et al. 1991; Dreon et al. 1994), several
lines of evidence, including both pedigree-segregation
analysis and recombinant inbred mouse studies, support
major gene control of LDL particle size (Austin et al.
1988b, 1990a; Jiao et al. 1990; de Graaf et al. 1992).

Studies in twins have afforded another approach to
examine genetic influences on the LDL particle distribu-
tion. Heritability of LDL particle size, as assessed by
relative concordance in monozygotic versus dizygotic
twins, has indicated that genetic factors account for ap-
proximately half of the variation in LDL particle size in
both men (Lamon-Favas et al. 1991) and women (Austin
et al. 1993), with the remainder due to nongenetic (i.e.,
environmental) influences or stochastic variation. A
number of such influences have been identified, includ-
ing abdominal adiposity (Terry et al. 1989), presence of
diabetes mellitus (Barakat et al. 1990; Feingold et al.
1992; Selby et al. 1993), use of progestin-containing
oral contraceptives (de Graaf et al. 1992), and dietary
factors.

Other studies have focused on identifying the genetic
loci underlying the pattern B phenotype by performing
linkage analysis of LDL subclass patterns and particle
size to candidate genes. Initial analyses excluded linkage
to apoB (La Belle et al. 1991) and apoE (Nishina et al.
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1992). Evidence has been presented that a gene control-
ling this atherogenic lipoprotein phenotype (LDL sub-
class pattern B) exhibits linkage to the LDL receptor
locus on the short arm of chromosome 19 (Nishina et
al. 1992).

In the present study, utilizing nonparametric quantita-
tive sib-pair and newly developed relative-pair linkage
methodologies, we tested for evidence for linkage of a
gene or genes determining LDL particle size phenotype
to the LDL receptor locus and other candidate gene loci,
including the apoAI-CIII-AIV cluster, apoE-CI-CII clus-
ter, apoAII, apoB, apo(a), cholesteryl ester transfer pro-
tein (CETP), lipoprotein lipase (LPL), and HDL binding
protein. Nonparametric quantitative linkage methodol-
ogy was felt to be the most appropriate method of analy-
sis. In particular, nonparametric approaches do not re-
quire a prior assumption regarding the mode of
inheritance, and quantitative analyses utilize the maxi-
mum available information, that is, the entire range of
values of the quantitative trait rather than an arbitrary
dichotomization of the data. As detailed below, we
found evidence for involvement of four distinct chromo-
somal loci, which indicates multiple genetic determi-
nants of this atherogenic phenotype.

Material and Methods

Clinical Studies
The study sample consisted of 25 CAD pedigrees as-

certained through a proband and at least 1 other blood
relative with documented (surgically or angiographi-
cally) CAD at Cedars-Sinai Medical Center in Los
Angeles. Individuals studied included all family mem-
bers >15 years of age willing to participate. There are
306 individuals in these 25 families, 278 of which were
assayed for LDL particle size. All are Caucasian families,
which minimizes interethnic variation in gene frequen-
cies, both of marker and disease genes. The investigation
was approved by the Cedars-Sinai Human Subjects Pro-
tection Committee.

Phenotyping
Ten milliliters of blood (overnight fasting) was drawn

from each of the participating family members of these
pedigrees. The blood was stored in tubes containing
Na2EDTA, 1.4 mg/ml. The plasma was separated at 40C
by low-speed centrifugation. Lipids and apolipoproteins
were quantified by methods described elsewhere (War-
den et al. 1993; Bu et al. 1994).
LDL subclass distributions were analyzed following

nondenaturing gradient-gel electrophoresis of plasma in
2%-16% polyacrylamide gradient gels (Pharmacia) and
densitometric scanning (Transidyne RFT scanning den-
sitometer) as described elsewhere (Nichols et al. 1986;
Austin et al. 1988a, 1988b, 1990b). The particle diame-

ters were calculated from calibration curves by using
protein standards of known size (Nichols et al. 1986).
Qualitative LDL subclass patterns were assigned by cri-
teria described by Austin et al. (1988a, 1988b, 1990b).

Genotyping
DNA was isolated from peripheral blood cells (or

transformed lymphocytes) and typed for polymorphisms
at or near the following candidate genes: the apoAl-
CIII-AIV gene cluster, apoAII, apoB, the apoE-CII-CI
gene cluster, LPL, LDL receptor, CETP, HDL binding
protein, Mn-SOD, and apo(a). These polymorphisms
are described in table 1.
As regards genotyping at the apoCIII tetranucleotide

repeat (Zuliani and Hobbs 1990b), novel primers were
designed to amplify the apoCIII tetranucleotide repeat
in a single step. Sequences were hC3F (AGGCAGGAG-
AATGGGTTGAA) and hC3R (CGGGAGAGATGA-
CAGAGTTG). PCR was carried out in 96 well plates
in an MJ research thermocycler. Reaction conditions
were 95°C for 1 min, 59°C for 30 s, and 72°C for 1
min, with 25 cycles.

Statistical and Linkage Analyses
The values of peak LDL particle size measured by

gradient-gel electrophoresis were adjusted by multiple
regression analysis for age, sex, and body mass index
(BMI). These adjusted data and their log and square-
root transformations were then analyzed for linkage.
The methodology of robust sib-pair test of linkage was
used to test the hypotheses as to whether there was
evidence for linkage between a genetic locus controlling
a quantitative trait of interest and a specific polymorphic
marker locus (Haseman and Elston 1972; Amos et al.
1989). The actual sib-pair linkage analyses were per-
formed by utilizing the SIBPAL subroutine program of
SAGE, version 2.1 (SAGE 1992). Additional linkage
analyses were performed on those sib pairs in whom
an exact determination of the number of alleles shared
identical by descent was possible from the pedigree
structure. Since allele frequencies are not estimated with
this approach, results of these analyses are likely to be
conservative. Intraclass correlations between those sib
pairs sharing exactly two and zero marker alleles identi-
cal by descent were also calculated. The ILINK subrou-
tine program of LINKAGE 5.2 (Lathrop et al. 1984)
was used to estimate the genetic distance between the
polymorphic markers.

In addition to utilizing a robust linkage technology
that minimizes assumptions regarding mode of inheri-
tance, we have tried to avoid false-positive results by
the following analytic measures: (a) when using this
method, we exclude from our analyses those siblings
with extreme trait values, i.e., greater than the mean +3
SD, but none occurred for this trait in this sample; (b)

586



Rotter et al.: Genetic Determinants of LDL Particle Size

Table 1

Candidate Gene Polymorphisms Typed in CAD Families

Gene Marker Heterozygosity Indexa Chromosome Reference

ApoAI-CIH-AIV RFLPs detected by XbaIA, XbaIB, XbaIA = .35; XbaIB = .41; 11 Reviewed by Mehrabian and
gene cluster (A) and XmnI XmnI = .50 Lusis (1992)

ApoAI-CIII-AIV Simple-sequence tetranucleotide .70-.95 11 Zuliani and Hobbs (1990b);
gene cluster (B) repeat within the apoC-III gene Bu et al. (1994)

ApoAII Simple-sequence repeat (CA) .74 1 Weber and May (1989)
within the second intron

ApoB VNTR at the 3' end of the gene .73 2 Boerwinkle et al. (1989)
ApoE-CH-CI gene Simple-sequence repeat (CA) .80 19 Weber and May (1989)

cluster within the apoCII gene
apo(a) Variable number of kringle .94 6 Lackner et al. (1991)

repeats of gene
Manganese SOD 2 RFLP detected by TaqI .39 6 Xiang et al. (1987)
LDL receptor Simple-sequence repeat (CA) .46 19 Zuliani and Hobbs (1990a)

within gene
CETP (A) TaqI RFLP identified by Southern .11 16 Drayna et al. (1987)

analysis with cDNA probe
CETP (B) TaqI RFLP identified by Southern .47 16 Drayna et al. (1987)

analysis with cDNA probe
D16S313 Simple-sequence repeat (CA) .57 16 Hudson et al. (1992)

mapping 6 cM from the CETP
gene

HDL-binding RFLP detected by cDNA .27 2 Xia et al. (1993); Bu et al.
protein (HDLBP) hybridization (1994)

LPL3GT Microsatellite 3' to the LPL gene .81 8 Wood et al. (1993)
LPLSGT Microsatellite 5' to the LPL gene .44 8 Wood et al. (1993)
LPL HindIII RFLP identified by .39 8 Heinzmann et al. (1988)

Southern analysis with LPL
cDNA

a Percentage of unrelated individuals with two dissimilar marker alleles among all unrelated individuals.

without regard to their genotypes, we excluded those
sib-pairs with very large squared trait differences, i.e.,
greater than the mean +3 SD; and (c) we used the more
conservative unweighted least-squares option of SIBPAL
for our sib-pair linkage analyses.
Assuming no genetic heterogeneity, a true linkage re-

sult, either from a LOD score method or nonparametric
method, will hold in different families and/or in the same
but extended families. In our data, we were able to ex-
plore the latter possibility. In this study, we also em-
ployed a quantitative relative-pair linkage approach.
The two markers, the apoAI-CIII-AIV locus and the
CETP locus, which yielded tentative evidence in favor of
linkage with LDL particle size when the sib-pair linkage
method was employed, were reanalyzed using all avail-
able relative pairs in the CAD families. This approach,
suggested by Olson and Wijsman (1993), for the analysis
of candidate genes, is analogous to the sib-pair method
but can utilize other relative pairs such as uncle/aunt-
niece/nephew or first-cousin pairs. All relative pairs are
tested simultaneously for linkage, in one regression anal-
ysis. The squared difference in the trait is regressed on
the number of marker alleles shared identical by descent.

Each class of pairs has a unique intercept estimated,
which may be interpreted as the expected squared differ-
ence in the trait for that class of relative pairs when zero
alleles are shared at the locus being tested. A common
regression slope is estimated for all relative-pair classes,
and this is the statistic that, when significantly negative,
is interpreted as evidence for linkage. A common slope,
as opposed to a separate one for each class of relative
pairs, is estimated when testing for linkage of candidate
genes, because, when the recombination fraction is zero,
the expected values for the slopes of the regression lines
for each class of relative pairs has the same value. Prior
to this analysis, each relative pair was tested for identity-
by-descent concordance at the marker locus by tracing
the inheritance of the marker allele (or alleles, in the
case of sib pairs) through all intervening relatives con-
necting the pair. Marker-allele frequencies were not em-
ployed to estimate a likelihood of identity by descent.
Any relative pairs where missing data between them re-
quired marker allele frequencies to estimate the proba-
bility of marker concordance identical by descent were
eliminated from the relative-pair analysis.

In initial analyses, when all relative pairs within a
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Table 2

Mean (±SD) BMI, Serum Lipid, Lipoprotein, and Apolipoprotein
Levels in the Members of 25 CAD Families

Number Mean (±SD)

BMI (kg/M2) 306 25 (4)
Total cholesterol (mg/dl) 306 201 (42)
HDL-cholesterol (mg/dl) 306 55 (17)
LDL-cholesterol (mg/dl) 306 125 (38)
Triglyceride (mg/dl) 306 103 (70)
ApoB (mg/dl) 300 129 (35)
Lp(a) (mg/dl) 298 19 (24)
LDL particle size (A)a 278 267 (8)
LDL particle size (A)b 211 266 (8)

a All family members.
b Excluding males age s20 years of age and females -50 years of

age.

pedigree were treated as independent, tests of linkage
resulted in significant P values for the apo Al-CIII-AIV
and CETP analyses. When these analyses were con-

ducted accounting for the dependence in the family
structures by using the generalized estimating equation
(or, GEE) approach of Liang and Zeger (1986) as sug-

gested by Olson and Wijsman (1993), more conservative
results were obtained. To obtain these results, a program

written by Karim and Zeger using the IML procedure
of the SAS package of programs (1990) was employed.

Results

Descriptive Statistics
Mean (+SD) BMI (kg/m2), serum lipid, lipoprotein,

and apolipoprotein levels, and peak LDL particle size in
the members of the 25 CAD families are shown in table
2. The distribution of peak LDL particle sizes measured
by gradient-gel electrophoresis in the 278 family mem-
bers is shown in figure 1. In table 3, the distributions of
LDL subclass patterns (A, B. and intermediate) and their
corresponding mean particle sizes in all family members
and in family members excluding males <20 years of
age and females <50 years of age are indicated. Using
the "broad definition" of pattern B (including intermedi-
ate patterns), the overall prevalence in this population
(32%-36%) is similar to that other studies (Austin et

al. 1988a, 1990b; Campos et al. 1992a) but somewhat
less than that observed among patient populations with
CAD (Austin et al. 1988a; Campos et al. 1992b).

Linkage of Gene(s) Controlling LDL Particle Size
to LDL Receptor, ApoA l-C3-A4, CETP,
and Mn-SOD Loci
We tested for linkage of the quantitative trait LDL

particle size by using the robust nonparametric sib-pair
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Distribution of LDL particle peak size (A) in the CAD

linkage method of Haseman and Elston (1972). The
underlying basis for this approach is to compare the
quantitative variation in a trait between siblings as a
function of the number of marker alleles they share iden-
tical by descent. For selected markers, we endeavored
to increase the sample size by incorporating additional
relative pairs in our pedigrees, using a quantitative rela-
tive-pair linkage methodology proposed by Olson and
Wijsman (1993). Remarkably, we observed evidence for
linkage of a gene or genes determining LDL particle size
to at least four distinct genetic loci.
We obtained evidence for linkage of a locus on chro-

mosome 19p controlling LDL particle size with a three-
allele dinucleotide repeat polymorphic marker within
the LDL receptor gene locus (P = .008) (table 4). This
finding was robust to both log and square-root transfor-
mation of LDL size. To illustrate this result, the regres-
sion of squared trait differences of peak LDL particle
size (adjusted for age, sex, and BMI) versus the number
of LDL receptor marker alleles shared identical by de-
scent is shown in figure 2A. The negative slope of the

Table 3

Distribution of LDL Particle Size, Subclass Pattern vs. Particle Size

ALL FAMILY RESTRICTED FAMILY
MEMBERS MEMBERSa

LDL SUBCLASS LDL Size LDL Size
PATTERN No. (%) (A) No. (%) (A)

Pattern A 187 (68) 270 138 (64) 270
Intermediate 50 (18) 261 43 (20) 261
Pattern B 38 (14) 251 36 (16) 251

a Excluding those males <20 years of age and females <50 years
of age.
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regression line indicates evidence for linkage. To further
examine the evidence of linkage on chromosome 19, we
typed another informative microsatellite polymorphic
marker (D19S199) on that chromosome. This D19S199
marker was 19 cM from the LDL receptor locus, as

calculated with the ILINK program of LINKAGE 5.2
(Lathrop et al. 1984). Even at this distance, we observed
a suggestive P value of .11 with 90 sib pairs.
There has been a long-term interest in the apoA1-CIII-

AIV cluster locus on chromosome 1 1q as a risk factor
for atherosclerosis. Suggestive evidence (65 sib pairs, P
= .06; table 4) for linkage of LDL particle size with
this locus was obtained by quantitative sib-pair linkage
analysis using haplotypes constructed from three RFLPs
(XmnI, XbaI, and XbaII). A more informative micro-
satellite polymorphism of the CIII gene was typed for
further analysis using the quantitative relative-pair link-
age method. This approach utilizes the information from
all relative pairs, including uncle/aunt-nephew/niece,
first-cousin, grandparent-grandchild, and sib pairs.
Analysis of 102 relative pairs from the CAD families
resulted in a negative slope (with an initial P < .007,
when the dependence structure of relative pairs in the
pedigrees was not taken into account) that was margin-
ally significant when the dependencies in the pedigrees
were taken into account (P < .06) (table 4).
CETP is an important enzyme in HDL and LDL cho-

lesterol metabolism, and we have recently provided
evidence for linkage of the CETP with quantitative
HDL levels (Bu et al. 1994). Evidence for linkage was

observed between a microsatellite polymorphism
(D16S313) linked to the gene for CETP on chromosome
16p and a locus determining LDL particle size by the
quantitative sib-pair linkage method (table 4). This re-

sult was robust when both log and square-root transfor-
mations of LDL size were applied. The distance between
the D16S313 locus and CETP gene was estimated as 6.2
cM by the ILINK program of LINKAGE 5.2 (Lathrop
et al. 1984). The estimated negative regression line of

Table 4

Linkage Analysis, LDL Particle Size with LDL Receptor, ApoAl-CiII-
AIV, D16S313 (CETP), and Mn-SOD Loci in CAD Families

SIB PAIRa RELATIVE PAIRa

GENETIC Loci No. P Value No. P Value

LDL Receptor 102 .008 ...

ApoAI-CIII-AIVb 65 .06 96 .06
D16S313 (CETP) 87 .03 71 .01
Mn-SOD 55 .001

'All sib pairs genotyped.
bFor relative pairs, a tetranucleotide repeat marker within the

ApoCIII gene was employed.
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Figure 2 Negative regression of squared trait differences for
age-, sex-, and BMI-adjusted peak LDL particle size versus the number
of marker alleles shared identical by descent. A, LDL-receptor locus
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LDL-receptor locus). B, D16S313 [CETP] locus (N = 4, 18, and 14
sib pairs for sharing two, one, and zero alleles out P16S313 [CETP]
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identical by descent at the marker locus.

squared trait differences for peak LDL particle size (ad-
justed for age, sex, and BMI) versus the number of
D16S313(CETP) alleles shared identical by descent by
the sibling pairs is shown in figure 2B. With this initial
level of significance and the existence of a marker locus
with multiple alleles allowing use of the relative-pair
method, we extended the analysis to other relatives. Use
of the quantitative relative-pair linkage method in 71
informative relative pairs from all 25 CAD families
yielded stronger evidence for linkage (P = .01, corrected
for the dependencies with the pedigrees; P = .001, un-

corrected for such dependencies) (table 4).
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Figure 3 Intraclass correlations of LDL particle size for sib pairs
alleles identical by descent.

Finally, a TaqI RFLP marker at the manganese super-

oxide dismutase (Mn-SOD) gene locus on chromosome
6q was also linked to gene(s) determining LDL size (P
= .001; table 4). This finding was also robust to different
data transformations. Relative-pair linkage analysis was
not performed, because of the relative uninforma-
tiveness of this RFLP marker.

For other candidate gene loci, including apoB, apoAll,
apo(a), apoE-CI-CII, lipoprotein lipase, and HDL-bind-
ing protein, no linkage was observed by sib-pair linkage
analyses (P ranged from .24 to .81).

Correlation Analysis of LDL Particle Size
An alternative way to illustrate the linkage of a gene

controlling a quantitative trait and a genetic marker lo-
cus is to compare the correlations among those sib pairs
sharing exactly two marker alleles identical by descent
with those pairs sharing zero alleles identical by descent.
As expected from the linkage data, we obtained a strong
positive correlation, r = .77, P < .01, for those sib-pairs
sharing both LDL receptor alleles identical by descent
and a negligible correlation, r = -.07, among those
pairs sharing zero LDL receptor alleles identical by de-
scent (see fig. 3). An analogous result was seen for the
CETP locus.

Discussion

In this report, we have provided evidence for genetic
control of the important atherosclerosis quantitative risk
factor LDL particle size by four distinct chromosomal
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295

sharing exactly two (panel A) and zero (panel B) LDL-receptor marker

loci. This was done by utilizing nonparametric linkage
technology, including both quantitative sib-pair and rel-
ative-pair linkage analytic methods. Linkage to the LDL
receptor locus on 19p is a confirmation of previous link-
age report by Nishina et al. (1992). It should be empha-
sized that this was done in an entirely separate popula-
tion consisting of CAD families, while the previous
result was found with predominantly healthy families,
and by an entirely distinct analytic methodology (LOD
score linkage analysis in Nishina et al. [1992], nonpara-

metric quantitative linkage here).
The three additional loci identified were the possible

linkage of apoAI-CII-AIV gene cluster on 11q, D16S313
(CETP) on 16p, and Mn-SOD on 6q. It should be noted
that the effects of these loci were on quantitative variation
in LDL particle size, which may not necessarily translate
into an effect on the qualitative phenotype, that is, athero-
genic lipoprotein phenotype B (Nishina et al. 1992). While
these genetic loci have been identified by the use of poly-
morphic DNA markers that do not directly identify the
causative mutations in the respective genes, it is intriguing
that their protein products have connections to metabolic
pathways for which there is evidence of possible involve-
ment in the regulation of LDL particle size. Small, dense
LDL have been shown to have reduced affinity for the
LDL receptor (Nigon et al. 1991), and conceivably altered
LDL receptor function or regulation could result in further
impairment of plasma clearance of these LDL or their
metabolic precursors. G

Within the apoAl-CIII-AIV gene cluster, it has been
demonstrated that apoCIII gene haplotypes are associ-
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ated with variation in plasma triglyceride levels (Dam-
merman et al. 1993), which in turn could affect levels
of small, dense LDL (Krauss 1987). One possible mecha-
nism of such a genetic influence on triglyceride metabo-
lism, supported by studies in vitro and in transgenic
mice (Ito et al. 1990), is an effect of the gene on apoCIII
levels. Such an effect has been suggested recently on the
basis of an association of apoCIII gene variation with
plasma apoCIII levels (Paul-Hayase et al. 1992). In-
creased apoCIII content may impair lipolysis of triglyc-
eride-rich lipoproteins (Brown and Baginsky 1972;
Krauss et al. 1973; Ito et al. 1990) and may also interfere
with receptor-mediated clearance of the lipolytic rem-

nant particles (Windier and Havel 1985). It is also of
interest that some investigators have demonstrated asso-

ciation (Tybjxrg-Hansen et al. 1993) and linkage (Woj-
ciechowski et al. 1991) of polymorphisms in the apoAl-
CIII-AIV cluster to familial combined hyperlipidemia, a

disorder closely related to subclass pattern B (Krauss
et al. 1983). Several studies have reported population
associations of alleles at these loci with either hypertri-
glyceridemia or atherosclerosis (Doolittle et al. 1992;
Dammerman et al. 1993). In addition, hypertriglyceride-
mia and insulin resistance are associated with dense LDL
particle size (Reaven et al. 1993), and, in the few cases

where serum insulin levels have been examined, they
have been found to be associated or linked to the Al-
CIII-AIV locus (Kamboh et al. 1991; Rotter et al. 1992;
Cantor et al. 1993). Thus, an alternative hypothesis is
that this locus would mediate its effect on LDL metabo-
lism through the interrelationship between insulin resis-
tance and triglyceride metabolism.

In the case of CETP, there is evidence for polydisper-
sity and increased mass of small, triglyceride-rich LDL
particles in patients with homozygous CETP deficiency
(Sakai et al. 1991), and in vitro incubation of LDL with
CETP results in conversion to a larger and more uniform
size distribution (Lagrost et al. 1993). Furthermore,
dense LDL particle size is associated with low HDL
levels (Austin et al. 1990b), and we and others have
provided evidence for the involvement of the CETP locus
in determining HDL levels either by association or link-
age analyses (Kodon et al. 1989; Heiba et al. 1993; Bu
et al. 1994).
A mechanistic association of lipoprotein metabolism

with Mn-SOD activity is much more speculative, but it is
conceivable that defective function of Mn-SOD results in
increased lipid hydroperoxides in plasma lipoproteins,
with a concomitant increase in oxidative susceptibility, or

otherwise alters lipoprotein metabolism in a manner lead-
ing to formation of small, dense, more oxidizable LDL (de
Graaf et al. 1991; Tribble et al. 1992, 1994).
Some discussion regarding the statistical methods uti-

lized here is warranted. The underlying basis of both the
quantitative sib-pair and relative-pair linkage methods is

a comparison of the quantitative difference in a trait in
the pairs as a function of the number of alleles they share
identical by descent at a test locus (Haseman and Elston
1972; Amos et al. 1989; Olson and Wijsman 1993). When
compared with the LOD score method, this approach has a
major advantage of not requiring specification of a genetic
model. This is particularly important for studying a com-
plex trait such as LDL particle size, in which various modes
of inheritance have been suggested by segregation analyses
(Austin et al. 1988a, 1988b; de Graaf et al. 1992; Bu et al.
1992). A possible consequence of utilizing nonparametric
linkage, however, is that relatively larger sample sizes may
be required to achieve the same power that can be achieved
with the LOD score approach. Our sample size of 25
pedigrees is minimal when the relative-pairs method is used
due to the anticonservative nature of this test at small
sample sizes (Olson 1994). The adoption of relative-pair
linkage methods, however, in which information from
other relatives besides siblings can be used, can improve
the potential to identify linkage. Our finding of linkage of
a gene or genes controlling LDL particle size to three differ-
ent genetic loci (excluding the LDL receptor locus) should
be considered preliminary, as should all first linkage re-
ports, especially for complex phenotypes. We are encour-
aged by the consistency of the results utilizing both the
sib-pair and relative-pair methods. The LDL receptor re-
sult may now be considered established, however, since it
has been documented in two different studies with very
different populations and statistical methods. We do feel
that the other results have a favorable likelihood of con-
firmation, given (1) the robustness to different transforma-
tions of the quantitative traits and (2) the prior epidemio-
logical and biochemical data that implicate these specific
loci in various metabolic pathways contributing to varia-
tion in LDL particle size.
The findings described above lead to the hypothesis

that several different genetic loci underlie the expression
of the small, dense LDL phenotype, that these genes
cumulatively account for the high prevalence of the trait
in the general population, and that in any given family
one or more of the loci are responsible for the major gene
and additive effects identified by complex segregation
analyses. Moreover, the results suggest that different
genetically determined metabolic mechanisms may give
rise to the dense LDL particles and that these differences,
as well as gene-gene interactions, may result in variabil-
ity of metabolic and pathological manifestations among
affected individuals. Finally, the involvement of several
different genes suggests several different points to inter-
vene to prevent clinical CAD in those at genetic risk.
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