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Summary

Elsewhere we have proposed the use of extreme discor-
dant sib pairs (EDSPs) for mapping quantitative trait
loci in humans. Here we present sample sizes necessary
to achieve a given level of power with this study design,
as well as the number of sibs that need to be screened to
obtain the required sample. Further, we present simple
formulas for adjusting sample sizes to account for vari-
able significance levels and power, as well as the density
and informativeness of linkage markers in a multipoint
sib-pair analysis. We conclude that with EDSPs, the
most powerful study design, the smallest genetic effect
detectable with a realistic sample size is -10% of the
variance of the trait.

Introduction

Recent years have witnessed tremendous advances in
mapping and identifying the mutations that cause nu-
merous Mendelian syndromes. The general paradigm
has included initial linkage studies with multiplex fami-
lies to map a locus to a specific chromosomal segment,
followed by positional cloning. This endeavor is often
expedited by observing linkage disequilibrium in the re-
gion of interest, identifying chromosomal aberrations,
such as deletions or translocations in some affected indi-
viduals, and searching for candidate genes known to lie
in the area. The picture is different for non-Mendelian or
complex diseases. The lack of a simple correspondence
between genotype and phenotype and the involvement
of multiple loci make identification of single contribut-
ing loci difficult. One class of complex trait are quantita-
tive, i.e., those measured on a continuous, rather than
discrete, scale. Sometimes a disease phenotype is defined
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by thresholds applied to a continuous variable, such as
weight and obesity or blood pressure and hypertension.
For these cases, understanding the genetic basis for the
continuous trait can lead to understanding of the disease
(defined by the threshold) as well. One design commonly
employed to map loci underlying a quantitative trait
(quantitative trait loci, or QTLs) is sib pairs. In conven-
tional analysis, the squared difference in trait values for
a sib pair is regressed on identity by descent (IBD) at a
marker locus or loci. However, for sib pairs selected at
random, it has been shown that the power of such an
approach is quite low unless the proportion of variance
(heritability) due to a single contributing locus is large
(50%) (Blackwelder and Elston 1982). When sib pairs
are selected through probands with extreme values and
the second, unselected sib's trait value is regressed on
IBD with the proband, the power is increased but still
remains low at small values of heritability (Carey and
Williamson 1991).
We have recently shown that only three types of sib

pairs have substantial power to detect linkage for a
QTL, namely, those concordant for high or low values
and those discordant for high and low values (extreme
discordant sib pairs, or EDSPs) (Risch and Zhang 1995).
In fact, pairs involving sibs with intermediate values
provide little to no power to detect linkage. Further, we
showed that the EDSPs provide the greatest power
across most plausible genetic models and increase in
power when there is a residual correlation among sibs
(as is likely for multifactorial traits), as well as when
allele frequencies are high. Thus, we concluded that
EDSPs are the design of choice for mapping QTLs in
humans. The power of EDSPs has also been noted by
Eaves and Meyer using simulations (1994).

In our prior analysis, we only described the limiting
case of no recombination between trait and marker loci
and complete marker polymorphism. Here we provide
basic power tables (i.e., sample-size requirements) for
varying degrees of heritability, gene frequencies, residual
correlation, and mode of inheritance, as well as outline
adjustments to these numbers to account for recombina-
tion between marker and trait loci (in a multipoint anal-
ysis) as well as incomplete marker polymorphism.
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Calculation of Power

We consider two types of discordant sib pairs: (1) one
sib in the top 10% of the distribution and the other in
the bottom 10% (defined as T1B1 ); and (2) one sib in
the top 10% and the other in the bottom 30% (defined
as T1 B3 ). The first group is symmetric, while the second
is not. For the latter, we assume that high values of the
trait are associated with disease, and hence a collection
of individuals in the top 10% is easy to obtain from
clinical samples. Then, to expand the number of sib
pairs obtained from this proband group, we consider up
to the 30th percentile instead of only the 10th.
Power for these sib pairs can be calculated as we have

described previously. Define a single locus A with two
alleles A1 and A2. Let p equal the frequency of allele A1
and q = 1 - p the frequency of allele A2. Let a be the
mean value of individuals with genotype A1Aj, d the
mean for genotype A1A2, and -a for genotype A2A2.
We assume that the residual variance within each geno-
type is GE2 and that there is a residual correlation be-
tween sibs of value p. The additive genetic variance due
to locus A is GA2 = 2pq [a + (q -p )d]2, and dominance
variance is GD2 = (2pqd)2; hence, the total variance due
to locus A is OGG2 = GA2 + GD2. The heritability H due
to locus A is GG2/(GG2 + GE2). Without loss of generality,
we assume GE2 = 1, so that H = GG2/(GG2 + 1).
To calculate power, we need to determine the proba-

bility that a sib pair of given phenotypes shares 2, 1, or
0 alleles IBD at locus A. Let n denote the number of
alleles (0, 1, or 2) shared IBD by the sib pair. Then, for
example, for the top 10% -bottom 10% strategy, we
calculate P(i = i/T1B1) for i = 0, 1, and 2. To do so,
we apply Bayes's theorem, so that

Zi = Pf(i = i/TlB1) = - P (i = i)P(TlB1/ = i)
D

and

2

D =, fPic i)P(TlBl/nt = i).
i=O

We note that

P(n = 2) =P( = 0) =1/4 and P(n = 1) = '/2.

To calculate P(TlBl/h = i), we use the formula

P(T1B1/M = i) = I P(Gkl/ = i)P(TlBl/Gk),
k

where Gk denotes the kth possible pair of genotypes at
locus A for a sib pair (of nine possible ordered genotype

pairings). P(T1B1/Gk) is obtained by integrating a bi-
variate normal density function with mean values speci-
fied by the genotypes of GA, a variance of 1 within geno-
type, and correlation p. For more details on this
calculation, see Risch and Zhang (1995). Calculations
for other designs, such as T1B3, are performed similarly.
We initially assume a sample of n fully informative

sib pairs (i.e., both parents typed, marker PIC value of
1). Define X1 as the number of alleles (1 or 0) shared
IBD from the father and X2 the number of alleles shared
IBD from the mother. Then, Z2 = P(X1 = 1, X2 = 1),
Z, = P(X1 = 1, X2 = 0) + P(X1 = 0, X2 = 1), Zo
= P(X1 = 0, X2 = 0), and t =Z2 + 1/2Z1. For the ith
sib pair, let X1, be the IBD outcome with respect to the
father and X2, be the IBD outcome with respect to the
mother. Then we use as our outcome statistic the mean
number of alleles shared, namely, X =1/2n E (Xii
+ X2i). We assume that X is approximately normal with
mean t and variance [t( 1 - 2t) + Z2]/2n. We are testing
the null hypothesis Ho:T = 1/2 against the alternative H1:t
< 1/2; because we are focusing on discordant pairs, we
expect under linkage that allele sharing will be less than
the null expectation. Hence, we employ the power for
a one-sided test of a normal random variable, namely,

(1)za/2 + (-r

[ -r(1 - 2-r) + Z2

where CD is the cumulative standard normal distribution
function and z is the normal deviate corresponding to a
type 1 error probability of a (i.e., significance level).
Then, the number of sib pairs required to obtain a power
of 1 - fP (i.e., the probability of rejecting the null hypoth-
esis when it is false) is

(2)
1 [Zi_A(1 - 2, ) + Z2- Za/212
2 T_ '/2

Sample-Size Considerations
In tables 1-3, we provide required sample sizes to

detect linkage with the TIB1 and T1B3 strategies for
additive, dominant, and recessive models, respectively.
We assume a significance level a = .0001 (corresponding
approximately to a lod score of 3) and power 1 - 0
= .80. Numbers corresponding to gene frequencies
ranging from .1 to .9 and heritabilities H ranging from
.05 to .3 are given, as well as for the cases p = 0 and p
= .4. As can be seen in the tables, residual correlation
always reduces the necessary sample size. This is be-
cause, when there is a residual correlation causing sibs
to be similar, phenotypically discordant sib pairs will be
more likely to be genetically discordant at the locus of
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Table 1

Required Number of Sib Pairs to Detect Linkage for EDSPs for an Additive Model,
a = .0001 and 1 - = .8

H H
(p =0) (p = .4)

p .05 .1 .2 .3 .05 .1 .2 .3

A. Top 10% and Bottom 10%

.1 6,827 1,647 378 155 1,367 342 94 52

.3 6,449 1,482 314 120 1,394 346 88 42

.5 6,405 1,464 308 116 1,397 347 87 40

.7 6,449 1,482 314 120 1,394 346 88 42

.9 6,827 1,647 378 155 1,367 342 94 52

B. Top 10% and Bottom 30%

.1 11,706 2,544 507 185 2,894 673 161 75

.3 13,410 2,967 596 217 3,263 775 181 78

.5 14,750 3,377 707 263 3,501 852 204 88

.7 16,527 3,982 894 348 3,782 952 239 108

.9 22,079 6,247 1,845 930 4,523 1,248 366 189

interest. This is especially true at low values of heritabil-
ity, where the necessary sample size is often reduced by
at least threefold. This is important because it is for loci
with low heritability that there is likely to be residual
sib correlation due to other genetic effects. At high heri-
tability, most of the sib correlation is probably due to
that locus, and hence there is unlikely to be a large
residual correlation.

The sample sizes presented in tables 1-3, especially
for the T1B1 strategy, are within experimental limits.
This is true even for a low heritability of .1, especially
when there is a significant residual correlation. The one

exception for which EDSPs will not be practical is a rare

recessive gene. For this situation, concordant pairs are

more appropriate. This case can be identified a priori
by evaluating the role of dominance variance for the

Table 2

Required Number of Sib Pairs to Detect Linkage for EDSPs for a Dominant Model,
a = .0001 and 1 - = .8

H H
(p =0) (p = .4)

p .05 .1 .2 .3 .05 .1 .2 .3

A. Top 10% and Bottom 10%

.1 6,625 1,567 353 143 1,404 359 103 59

.3 6,369 1,454 312 127 1,460 384 114 65

.5 6,610 1,565 358 151 1,480 396 122 72

.7 7,623 2,049 573 276 1,457 398 134 86

.9 28,765 19,984 19,001 18,996 1,610 849 753 753

B. Top 10% and Bottom 30%

.1 11,713 2,476 471 168 2,962 689 163 77

.3 14,713 3,352 698 263 3,569 887 225 106

.5 18,685 4,879 1,289 596 4,190 1,128 322 164

.7 29,814 10,384 4,446 3,158 5,523 1,733 641 415

.9 332,421 297,274 295,120 295,117 25,126 19,277 18,797 18,795
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Table 3

Required Number of Sib Pairs to Detect Linkage for EDSPs for a Recessive Model,
a = .0001 and 1 - = .8

H H
(p =0) (p = .4)

p .05 .1 .2 .3 .05 .1 .2 .3

A. Top 10% and Bottom 10%

.1 28,765 19,984 19,001 18,996 1,610 849 753 753

.3 7,623 2,049 573 276 1,457 398 134 86

.5 6,610 1,565 358 151 1,480 396 122 72

.7 6,369 1,454 312 127 1,460 384 114 65

.9 6,625 1,567 353 143 1,404 359 103 59

B. Top 10% and Bottom 30%

.1 29,138 19,991 19,001 18,996 3,918 2,257 2,063 2,062

.3 11,211 2,591 622 282 2,836 702 199 111

.5 12,425 2,679 524 193 3,177 768 193 95

.7 14,505 3,282 676 252 3,534 875 221 104

.9 20,490 5,640 1,632 823 4,343 1,179 339 174

trait. Such a locus would produce substantial dominance
variance, for example as demonstrated by a higher corre-
lation between sibs than between parent and offspring.
Specifically, consider the formulas for additive variance
(GA2) and dominance variance (GD2) given above. The
ratio of sibling correlation to parent-offspring correla-
tion, for a recessive locus, is 1 + (VD/2VA) = 1 + (ql
4p). When p = .1, this ratio is 3.25, or quite large. When
P = .33, the ratio is only 1.5, or when p = .50, the ratio
is 1.25. Thus, concordant pairs will generally be more
useful than discordant ones only when the ratio of sib-
ling to parent-offspring correlations is large.
Population Screening
An important question remains as to how many sib

pairs need to be screened to obtain such a selected sam-
ple. Here we assume that only one tail of the distribution
is of primary clinical interest, so that a large population
of individuals at the high end (top 10%) of the distribu-
tion is readily available. The question, then, is how many
sibs of these individuals need to be screened to obtain
the requisite sample size (either bottom 10% or bottom
30%). These numbers are provided in tables 4-6 for
both the TiB1 and T1B3 strategies, for the same models
(heritabilities and gene frequencies) as shown in tables
1-3. Here the numbers range from the low thousands
at high heritability to the tens of thousands at low herita-
bility.
Adjustments to Sample Sizes
The numbers given in tables 1-3 are idealized, in

that they assume no recombination (8 = 0), parents are

typed, and the marker is completely polymorphic. To
obtain equivalent sample sizes under other conditions is
straightforward.

First, we consider significance level and power. Sup-
pose instead of a power of 80%, we would like a value
1 - P. From formula 2, the sample sizes in tables 1-3
would need to be multiplied by

[2zv p t(1 - 2t) + Z2 - Zn]2
L2Z.8Ot(l - 2X) + Z2 - Zo I

Unless t deviates greatly from 1/2, the above ratio can
be well approximated by

[ - Zl2

Z.80 - Za
(8)

For example, if a power of 90% is desired, the num-
bers in tables 1-3 can be multiplied by 1.2. A similar
formula can be derived for a different significance
level a.
Adjustment for recombination is also straightforward.

Under recombination between a marker and the trait
locus, the IBD probability X changes to a value ' closer
to the null value of 1/2. Again, resorting to formula 2,
the sample sizes would need to be multiplied by

F2z1_pvr'(1 - 2x') + Z2 -Z1 2 2

2z1_pV(1 - 2Xr) + Z2 - Z J L-/ 112
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Table 4

Number of Sib Pairs to Be Screened to Obtain the Required EDSP Families for an Additive Model

H H
(p =0) (p = .4)

p .05 .1 .2 .3 .05 .1 .2 .3

A. Top 10% and Bottom 10%

.1 73,642 19,120 5,048 2,356 85,355 21,441 5,635 2,833

.3 69,725 17,357 4,335 1,958 87,698 22,336 5,873 2,829

.5 69,268 17,166 4,273 1,918 87,968 22,484 5,894 2,784

.7 69,725 17,357 4,335 1,958 87,698 22,336 5,873 2,829

.9 73,642 19,120 5,048 2,356 85,355 21,441 5,635 2,833

B. Top 10% and Bottom 30%

.1 41,359 9,575 2,180 910 31,577 7,481 1,825 843

.3 47,203 11,075 2,526 1,056 35,601 8,647 2,107 942

.5 51,790 12,518 2,941 1,239 38,155 9,479 2,360 1,053

.7 57,864 14,638 3,629 1,565 41,144 10,535 2,718 1,249

.9 76,794 22,521 7,066 3,745 48,954 13,587 3,951 1,976

In the above expression, in general the second term pre- Thus, the ratio above reduces to

dominates, so to a very close approximation the multi- -[ 2
plier is [(t - 112)1(' - I2)]2. For a recombination fraction I 1/2)- 2)

0, the IBD probability t' = At + (1 - c)(1 - IF), where (LT 2) (t - 1/2)((21J - 1)
T= 02 + (1 _ 0)2. Then,

X,- '/2= (2N - 1) + 1 - v-/2
= (t - 1/2)(2V- 1) .

J11 ---%, (4)1 4Mr(1i-A) '%-
(2b - 1)2 (2i,- 1)2

'

For example, for a recombination fraction 0 of .05,

Table 5

Number of Sibs to Be Screened to Obtain the Required EDSP Families for a Dominant Model

H H
(p = 0) (p = .4)

p .05 .1 .2 .3 .05 .1 .2 .3

A. Top 10% and Bottom 10%

.1 71,360 18,153 4,704 2,171 87,300 22,320 6,062 3,119

.3 68,379 16,777 4,150 1,920 90,381 23,957 7,066 3,915

.5 70,464 17,769 4,588 2,158 90,199 23,768 6,872 3,693

.7 80,337 22,615 6,847 3,531 85,781 21,777 5,902 2,943

.9 294,105 205,218 195,254 195,204 85,130 41,016 35,522 35,514

B. Top 10% and Bottom 30%

.1 41,309 9,294 2,023 828 32,215 7,611 1,823 846

.3 51,420 12,307 2,843 1,192 38,506 9,660 2,478 1,165

.5 64,731 17,513 4,938 2,421 44,717 11,980 3,333 1,618

.7 102,091 36,212 15,865 11,407 58,074 17,793 6,196 3,786

.9 1,115,392 997,837 990,632 990,622 261,307 199,189 194,085 104,064
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Table 6

Number of Sibs to Be Screened to Obtain the Required EDSP Families for a Recessive Model

H H
(p =0) (p = .4)

p .05 .1 .2 .3 .05 .1 .2 .3

A. Top 10% and Bottom 10%

.1 294,105 205,218 195,254 195,204 85,130 41,016 35,522 35,514

.3 80,337 22,615 6,847 3,531 85,781 21,777 5,902 2,943

.5 70,464 17,769 4,588 2,158 90,119 23,768 6,872 3,693

.7 68,379 16,777 4,150 1,920 90,381 23,957 7,066 3,915

.9 71,360 18,153 4,704 2,171 87,300 22,320 6,062 3,119

B. Top 10% and Bottom 30%

.1 99,292 68,430 65,085 65,068 39,460 22,004 19,964 19,953

.3 39,031 9,434 2,462 1,200 29,860 7,195 1,863 919

.5 43,412 9,855 2,154 889 34,005 8,225 2,045 979

.7 50,710 12,062 2,761 1,148 38,134 9,533 2,437 1,146

.9 71,296 20,372 6,285 3,343 46,924 12,795 3,631 179

the sample sizes need to be multiplied by 1.52; for a
recombination fraction of .10, the multiplier is 2.44.

In general, in mapping trait loci, we do not test just
a single marker but a map of markers in a multipoint
analysis. Consider a map of completely informative
equally spaced markers. Power is greatest when the trait
locus occurs at the same site as a marker (corresponding
to the case 0 = 0). The greatest loss of power occurs
when the trait locus is exactly midway between flanking
markers. Assume the trait locus is recombination frac-
tion 0 away from each of the flanking marker loci. Then,
instead of measuring IBD from a single marker locus,
we have IBD at the two marker loci. Letting 1 represent
IBD and 0 non-IBD, the probabilities for the four possi-
ble outcomes for the two marker loci, assuming no inter-
ference, are

P(1,1) = W2t + (1 - Xh)2(1 - r)

P(1,0) = N'(1 - N'),

P(0,1) = N'(1 - NV),

P(0,0) = (1 - N')2t + 2(1 _-)

Note that the outcomes (1,0) and (0,1) provide no infor-
mation regarding t. Thus, our effective sample size is
only

1 - 2N'(1 N) = N2 + (1 _ N)2.

We can estimate t' by

= P(1,1)
P(1,1) + P(0,0)

1

After some algebra it is easy to show that

i -1/2 = [V2 + (1 - N'2] (t- 2/)[V2-(1 - )2]

Thus,

E(t- /2)]2 [V2+(1 _ )2-2
e(t -1/2)J =V2 _ (1 _ j2

However, in estimating the required sample size, we also
need to account for loss of information due to the two
recombinant groups. Thus, the ratio above needs to be
divided by 2 + (1 _ N')2, the proportionate reduction
in effective sample size. Finally, we get a ratio of

2 + (1 _ )2 2V(1- ')
[V2 _ (1 _ V)2]2 '(2V - 12>2 (5)

Notice that the second term in this expression is exactly
half that for the single-locus case given above. Thus, the
required increase in sample size is exactly half that for
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a single marker located a recombination fraction 0
away. For example, for a 10-cM map, the required in-
crease in sample size is 1.26; for a 20-cM map, the
required increase is 1.72. In the latter case, this amounts
to a 40% reduction in necessary sample size by using a
multipoint analysis compared to single-locus analysis.

Next, we consider the effect of using incompletely
polymorphic marker loci. The probability that a sib pair
is informative for IBD from a given parent is simply the
PIC value, which we denote by s. Again, we consider the
least-informative case, when the trait locus lies midway
between two marker loci. In a proportion S2 of cases,
both flanking markers are informative. In a proportion
2s(1 - s) of cases, only one of the two flanking markers
is informative. In the remaining (1 - S)2 proportion of
cases, neither marker is informative. To estimate t', we
need to combine information from the fully informative
and half informative cases. Using arguments similar to
those given above, we calculate

1/ - ( - /2)(2N' - 1)(2 - s)
2 + s(2 - s)2(2N1 - 1)2

Hence, the sample-size ratio, after accounting for the
reduced effective sample size due to recombinants be-
tween flanking markers (for the fully informative cases)
and the fully uninformative cases (for marker uninfor-
mativeness), is

2 + s(2AV - 2 - 1)
s(2 - s)2(2 - 1)2)

For a 20-cM map, or 0 - .10, if s = .8, the necessary
multiplier is 2.04; if s = .7, it is 2.26 (note, these are in
contrast to the 1.72 given above for the s = 1 case). For
a 10-cM map, or 0 - .05, if s = .8, the required multi-
plier is 1.41; if s = .7, it is 1.52. These numbers compare
to 1.26 for the s = 1 case given above. Note that these
numbers are somewhat conservative, because we have
not considered more distant flanking markers when an
immediate marker is uninformative. This is likely to
have led to slightly inflated multipliers for denser (e.g.,
10-cm) maps.

Finally, these calculations assume parents are avail-
able and typed. When such is not the case, resort to
identity by state replaces IBD, and some information is
lost. General guidelines for this case have been given
elsewhere (Risch 1990, 1992; Holmans 1993; Hauser
et al., in press). When other sibs are available for typing
to help reconstruct missing parents, the situation be-
comes more complicated and is dealt with elsewhere
(Hauser et al, in press).

Discussion

Tables 1-3, along with formulas 3-6, should be use-
ful for designing studies to map loci for quantitative
traits using extreme discordant sib pairs. The power in
any particular case will depend on the heritability of the
locus to be mapped, as well as the density and PIC value
of the markers.
The feasibility of screening large numbers of individu-

als will depend on whether information on the trait is
readily available (e.g., weight or height) or whether ex-
pensive and/or invasive testing is required. In any event,
tables 1-3, in conjunction with tables 4-6, demonstrate
the trade-offs in designing a linkage study. If the limiting
factor is the expense of genotyping, but the sibling mate-
rial is easily obtained, a TiBi strategy is appropriate;
on the other hand, if it is the sibling material that is the
limiting resource, whereas the genotyping is inexpensive,
the T1B3 strategy is preferred. Perhaps a reasonable
trade-off is to collect all the T1B3 sibships, first type the
TiB1 pairs, and then confirm the initial positive findings
with the remaining pairs.

Tables 1-6 also illustrate that even using EDSPs, gen-
erally the most powerful sib-pair design for detecting
linkage for quantitative trait loci (Risch and Zhang
1995), the power to detect loci of low heritability, i.e.,
<10%, is still limited, and in this region screening of
very large numbers of individuals is necessary.
The example we have given uses the upper 10% of

the trait distribution as representative of individuals
of extreme phenotype likely to be classified as "af-
fected." Similar tables can be generated for higher
(e.g., upper 5%) or lower (e.g., upper 20%) thresh-
olds. As we have shown elsewhere (Risch and Zhang
1995), using a higher threshold will increase power
per pair (but leads to reduced sample sizes), while
using a lower threshold decreases power per pair (but
leads to an increased sample size). For some diseases,
it is not possible to directly categorize affected indi-
viduals as being in the upper x% of a continuous
distribution. For example, although hypertensives
are in the upper tail of the blood-pressure distribu-
tion, it would not be correct to say that they precisely
represent the upper x% of the blood pressure distri-
bution (systolic or diastolic). However, if someone
is given a diagnosis of hypertension and placed on
antihypertensive medication, it is likely that he or
she has extreme blood-pressure values, systolic and/
or diastolic. The advantage of the approach pre-
sented here is that it does not depend on the actual
values of the quantitative trait, only on the fact that
sibs have extreme values. Sibs with low blood pres-
sure can be measured and evaluated directly (for ex-
ample, for being in the bottom 10% or 30% of the
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distribution), while it is probably safe to assume that
those considered affected are approximately in the
upper x% of the distribution, where x is the popula-
tion prevalence of the disease.

In general, association studies with candidate loci
can be far more powerful for detecting weak gene
effects than linkage studies (Risch 1987; Greenberg
1993; Eaves and Meyer 1994; Risch and Zhang
1995). The limitation of that approach, however, is
that it requires either prior identification of the caus-
ative genetic variant itself, or another variant in link-
age disequilibrium with it. In general, linkage dis-
equilibrium spans only short genomic regions,
limiting its utility in a global genome screen at this
time. However, for candidate loci, the approach can
be extremely powerful if variation at the locus contri-
butes to trait variation. In any event, the EDSP design
we have discussed is a powerful and robust design
for such studies, as has also been shown by Eaves
and Meyer (1994).
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