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A General Statistical Model for Detecting Complex-Trait Loci by
Using Affected Relative Pairs in a Genome Search

Susan L. Smalley, J. Arthur Woodward, and Christina G. S. Palmer*

University of California, Los Angeles

Summary

Scanning of the human genome by use of affected rela-
tive pairs and dense sets of highly polymorphic markers
or by emerging techniques such as genomic mismatch
scanning (GMS) is making it possible to identify the
genetic etiology of a disease through detection of suscep-
tibility loci. We present a general statistical model and
test to detect disease genes, using affected relative pairs
and either markers or GMS technologies in a genome
search. There are an exact test and large-sample normal
approximation that control for the elevated probability
of false detection of linkage in a genome search. The
approach can be used to determine the sample size

needed to obtain a prespecified power to detect a disease

gene in the presence of etiologic heterogeneity for a sin-
gle class or mixture of relative classes, with any number
of markers or clones, marker PIC values, or mapping
function. The approach is used to examine differences
in performance of markers and GMS technologies in a
common statistical framework and to provide practical
information for designing studies of complex traits.

Introduction

Conducting a genome search by use of affected-relative-
pair methods is emerging as a major tool for the genetic
dissection of a complex trait (Lander and Schork 1994).
Success of the approach depends, in part, on the avail-
ability of highly polymorphic, densely spaced markers
and on efficient methods of genotyping these markers.
Advances in molecular technology, including develop-
ment of novel methodologies, such as genomic mismatch
scanning (GMS) (Nelson et al. 1993), are rapidly reduc-
ing genotyping costs and increasing efficiency, making
feasible the use of a genome search as an exploratory
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tool in identifying the genetic etiology of disease. The
use of a genome search and affected-pair sampling as
an exploratory tool may require evaluation of hundreds
of polymorphic markers or, in the case of GMS, thou-
sands of clones, which, in the absence of susceptibility
loci, can lead to an elevated probability of false detection
of linkage.

In general, linkage methods are applied once the ge-
netic etiology of a trait is well established, and, in the
context of a genome search, correct identification of a
marker linked to a putative disease gene increases in
probability as more and more markers are genotyped
(Risch 1991). However, use of a genome search to estab-
lish the genetic etiology of a trait by directly localizing
the genes differs from the former case, because less a
priori information about the genetic etiology of the trait
may be available. In fact, Kruglyak and Lander (1995)
report that use of a minimum LOD score of 2.3 in a
genome search using affected sibling pairs (when there
are no susceptibility genes) will yield a type I error with
~.8 probability. As a genome search using affected rela-
tive pairs is applied in an exploratory fashion, a statisti-
cal approach that handles realistically complex etiolo-
gies and that can be used with any sampling design is
desirable. Furthermore, it is desirable that the approach
be applicable to different molecular technologies cur-
rently available or in development, so that their perfor-
mance in a genome search may be compared in a com-
mon statistical framework with explicit control for the
type I error.

Currently, a genome search using affected relative
pairs requires evaluation of polymorphic markers span-
ning the genome at fairly regular intervals, to detect
increased allele sharing among pairs. If a marker is com-
pletely polymorphic—i.e., each chromosome has a
unique allele at the marker—increased allele sharing
for a particular marker across pairs of affected relatives
(above the expected background rate) reflects increased
identity by descent (IBD) and the presence of a suscepti-
bility gene underlying that trait (Suarez 1978; Risch
1990b). However, for markers that are less than com-
pletely polymorphic, increased allele sharing may occur
because of identity by state (IBS), as well as because of
IBD, so that increased IBD must be inferred (Lange
1986; Bishop and Williamson 1990; Risch 1990c).

GMS is a novel molecular technique that circumvents
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the problem of allele sharing due to IBS, because it en-
ables all regions of IBD in the genome to be identified
between affected pairs of relatives (Nelson et al. 1993).
The technique is based on the unique ability of DNA
from IBD regions to form large “heterohybrid” duplexes
(one strand from each individual) that are free of mis-
matches. Mismatch-free heterohybrids, ~10-20 kb in
size, are then hybridized onto either metaphase chromo-
somes or clones containing contiguous human genomic
DNA, to identify chromosome locations of increased
IBD across pairs of affected relatives. In a clone-based
GMS procedure, thousands of clones are evaluated (e.g.,
3,300 clones, each 1 Mb in size, in a genome 3,300 cM
in length). Thus, GMS is a technology that is equivalent
to having 100% polymorphic markers that completely
cover the genome. Although GMS is not yet feasible
in eukaryotic organisms, work is in progress at several
laboratories to apply it to the human genome.

Statistical methods using affected relative pairs (or
pedigrees) and markers in the context of a genome
search have been the focus of recent research (Elston
1992; Brown et al. 1994; Kruglyak and Lander 1995).
Lander and Schork (1994) provide an excellent review
of recent studies addressing difficult issues involved in
a genome search, including choice of significance levels,
sampling designs, and marker densities.

Statistical methods using GMS technology in the con-
text of a genome search are in the early stages of devel-
opment. Feingold (1993) and Feingold et al. (1993) have
described a set of stochastic processes including Markov
chain and Gaussian approximations for analyzing quali-
tative traits, with pairs of affected relatives. Feingold et
al. (1993) used the Orstein-Uhlenbeck process and an
assumption of normality to model the dependencies
among segments of DNA along a single chromosome,
in order to approximate their test, which uses the largest
order statistic. Their statistical test is adjusted for the
number of independent chromosomes evaluated, by use
of the Bonferroni procedure. N. J. Schork and S. Ghosh
(personal communication) proposed modification of
GMS (MGMS), in order to fully differentiate states of
parental allele sharing in siblings. Two MGMS assays
were described. One assay applied representational dif-
ference analysis on GMS-selected DNA. The other assay
compared material selected by GMS with that not se-
lected by GMS, to distinguish between sibling sharing
of one parental DNA segment and sibling sharing of
two parental DNA segments, at a specified region. They
presented a statistical approach to detect quantitative-
trait loci by using an MGMS assay and nonoverlapping
clones.

We present a general statistical model for a genome
search using affected relative pairs and either a marker-
or clone-based GMS technology. The approach can be
used for mixtures of relative-pair classes in the presence
of complex etiologies. There are an exact test and large-
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sample normal approximation that control for the ele-
vated probability of false detection of linkage in a ge-
nome search. By creation of sets that contain indepen-
dent markers or clones, the exact distribution of the
largest order statistic, without a normality assumption,
is used to identify significantly increased allele sharing
under markers—or enriched regions of IBD under
GMS—among independent pairs of affected relatives.
The statistical test is adjusted for the number of depen-
dent sets of markers evaluated, by use of the Bonferroni
procedure. We illustrate power to detect susceptibility
genes for markers and GMS under a variety of genetic
models and sampling designs, in order to compare these
two technological approaches and to provide practical
information for designing a genome search.

Method

The test presented in this paper takes advantage of
the fact that we can identify statistically independent
markers or clones and group them together into mutu-
ally exclusive sets for subsequent analysis. Statistical in-
dependence is approximated by including in a set only
those markers or clones that are known to assort inde-
pendently, either because they lie on different chromo-
somes or because they are =100 cM (or, for clones, 100
Mb) from each other. Since, under independent assort-
ment, the recombination frequency, 6, is .5, two markers
separated by =100-cM distances are approximately sta-
tistically independent. The value of 8 corresponding to
100 cM depends on the choice of mapping function (Ott
1991). The fact that markers or clones across sets are
statistically dependent does not violate the assumptions
of our statistical test.

To illustrate aspects of the approach throughout this
paper, we describe two hypothetical genome-search
strategies, one for markers and one for clone-based
GMS, assuming a 3,300-cM autosomal, sex-averaged,
haploid genome (Renwick 1969). For a marker search,
we evaluate 330 markers with 10-cM spacing between
adjacent markers, such that any disease locus is, at most,
~5 cM from a marker. The 330 markers are grouped
into 10 sets of 33 statistically independent markers. For
clone-based GMS, we evaluate 3,300 clones, each 1 Mb
in size. These 3,300 clones are placed into 100 sets of
33 statistically independent clones. Each set of 33 mark-
ers or clones is examined for similarity among 7 inde-
pendent pairs of affected relatives.

As originally described, GMS provides complete cov-
erage of the genome (e.g., 3,300 clones); however, a
partial GMS (PGMS) procedure could also be imple-
mented, by hybridization to a subset of clones rather
than to the entire genome. Such a procedure is equiva-
lent to evaluating completely polymorphic markers at
intervals throughout the genome. We will refer to PGMS
and completely polymorphic markers covering a frac-
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tion of the genome as “interval IBD” (I-IBD) and will
consider the genome-search strategy to be that described
above for 330 markers.

Measures of Allele Sharing

Let X;; be a random variable whose values represent
either hybridization of GMS-selected DNA to clones or
sharing of alleles for markers for relative class i (i = 1,
¢) and relative pair j (j = 1, n;), where c is the number
of relative classes (e.g., siblings, first cousins, etc.) and
n; is the number of pairs of relatives in class i. The total
number of relative pairs is # = Z_; n; In the case of
GMS, X;; has only two possible values, 0 (no hybridiza-
tion) or 1 (hybridization), for all relative classes. Note
that, for the sibling case, X;; takes on the value of 1
when either one or two parental alleles are shared IBD,
because these two IBD states cannot be differentiated
by the GMS technology described by Nelson et al.
(1993). For convenience, in the remainder of this paper
we use the term “allele sharing” with the understanding
that, in the case of a GMS technology, this term refers
to hybridization of GMS-selected DNA to clones. In
the case of markers and MGMS, X;; has three possible
values—O0, 1, and 2—which reflect sharing of no alleles,
sharing of one allele, and sharing of two alleles, respec-
tively.

The sum of the X within the ith class is denoted as
Y; = =7, X, and the sum across all relative classes is
denoted as Z = 3, Y; = 2, (7%, X;). When X takes
on two values, the sum Y; is equivalent to a statistic
described by Blackwelder and Elston (1985), Bishop and
Williamson (1990), and Risch (1990b). When X;; takes
on three states, the sum Y; is equivalent to the mean
statistic described by Green and Woodrow (1977),
Blackwelder and Elston (1985), and Thomson and Mo-
tro (1994).

The random variable Xj is evaluated for the rth
marker or clone (r = 1, g) in a set, where g is the total
number of markers or clones evaluated in a set and s is
the number of sets. Thus, (g)(s) is the total number of
markers or clones evaluated in any study. For the marker
search strategy outlined above, g = 33 and s = 10; for
the GMS search strategy, g = 33 and s = 100.

Null distribution of X;;.—In the absence of a disease
locus in the genome and, therefore, in any set—the null
distribution of X at the rth marker or clone is

Tio Too O 0 Kio
Ty | =|Tw Tuu O Xi1 1)
7 Ty Ta Tallxa

ni‘_'TKi’

for family class i, where m;, = P(IBS = u) at marker locus
r and T is a lower-triangular matrix with T,, = P(IBS

Am. J. Hum. Genet. 58:844-860, 1996

= u|IBD = v) for the rth locus. The elements of T are
derived from known population allele frequencies at the
rth marker locus (Bishop and Williamson 1990, p. 255).
Also, in equation (1) x; is a vector of coefficients of
relationship, where, for all 7, x;, = P(IBD = v) for rela-
tive class i (Wright 1922). Note that, for unilineal rela-
tives, K;; = 0. For GMS, MGMS, and I-IBD, T = I, the
identity matrix, because at marker locus r the P(IBS
= u|IBD = v) equals 1 when # = v and equals 0 when
u+v.

Null distribution of Y;.—In the case of GMS, Y, is
binomial and denoted

Y; ~ Bin(n;, my + W) . (2)

In large samples, the null distribution of Y; can be ap-
proximated by the normal distribution with expected
value and variance:

E(Y;|Ho) = n;(my + m3) 3)

Var(Y;|Hp) = mi(mi + T2)[1 — (mq + W2)] .

For markers and MGMS, the distribution of Y; is no
longer binomial, because all three states of allele sharing
are present. We refer to the distribution of the sum of
n; independent three-level discrete random variables as

Y ~ S(n;, i1, m2) - (4)

We retain the use of all three states of allele sharing for
siblings, when using MGMS or markers, because this
measure of allele sharing has been shown generally to
have equal or greater power than one that dichotomizes
X;; (Blackwelder and Elston 1985). Our own compari-
sons of alternate measures showed a similar finding for
the range of disease-allele frequencies considered in this
paper. The exact distribution of Y; is computed by use
of the computational algorithm given in appendix A. In
large samples, Y; can be approximated by the normal
distribution with expected value and variance

E(Y;|Hp) = ni(myy + 2m;)

Var(Y;|Hp) = ni[ma(1 — my) (5)
+ 4m;, (1 — mp) — 4mam,] .

For unilineal relatives we combine the allele-sharing
states of 1 and 2 into a single category, because our
previous power comparisons revealed that this measure
of allele sharing has similar or greater power than one
using all three states. Hence, for all power computations
involving unilineal relatives, we consider the distribution
of Y; to be binomial—i.e., Bin(n;,7;;+7), as defined in
equation (2) for the case of GMS. The expected value
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and variance for the normal approximation are found
in equation (3).

Null distribution of Z.—The sum of Y; across all rela-
tive classes, Z = Y; + Y, + ... + Y,, is the convolution
of discrete random variables, because each relative class
has unique probabilities of allele sharing (i.e., ;). The
density function of a sum of independent random vari-
ables, i.e., f{Z), can be expressed as a function of the
densities of the components, i.e., f{Y;); this is called the
“convolution of densities” (Feller 1957) and is denoted
as

fZ) = f(Y1)*f(Y2)* ... *f(Y.). (6)

For GMS, the null distribution of Z is the convolution
of the ¢ binomials given in equation (2). For a study
using MGMS for siblings and GMS for the (¢ — 1)
unilineal relative classes, the null distribution of Z is
the convolution of the single distribution of Y; in equa-
tion (4) and the (¢ — 1) binomial distributions in equa-
tion (2); the same convolution would apply for a study
using markers and the same mixture of relative classes.
The exact convolution of densities in equation (6) can
be computed efficiently by use of the convolution algo-
rithm in appendix A. In large samples the density of
Z can be approximated by the normal with E(Z)
=37, E(Y;|Hy) and Var(Z) = Z;_; Var(Y;|Hy), by use
of the expected values and variances of Y; found in
equations (3) and (5).

Statistical Test

The test statistic is Z' = max(Z,,Z,, ...,Zg), the
largest order statistic in a set of g independent markers
or clones. Our use of the largest order statistic follows
Feingold et al. (1993). The statistical test for detecting
increased allele sharing is

accept Hyif 2’ < b,
(7)

accept Hy if 2’ = b,

where b is the value exceeded by the o, proportion of
the null distribution of Z’, and o, is the per-comparison
type I error probability. The desired experiment-wise
type I error probability, o, and the total number of
sets evaluated in any study are used to determine the
O, Where o, = 0y /s (Hochberg and Tamhane 1987).
For example, with 330 markers arranged into 10 sets
of 33 markers, the Z’ in each set are evaluated at o,
=.05/10 = .00S5. For a GMS technology, with 3,300
clones arranged into 100 sets of 33 clones each, the Z’
in each set are evaluated at o, = .05/100 = .0005.

Under the null hypothesis of no susceptibility locus,
the distribution of the largest order statistic is

F(Z':b) = P(Z' < b) = K(Z:b)®, (8)
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under the assumption that there is independence of the
g markers or clones within a set. The critical value of
the test in equation (7) is computed by inverting the
cumulative density function in equation (8) by use of a
discrete bisection algorithm (e.g., see Knuth 1973), in
order to find the b value that yields a prespecified value
of the cdf. We note that use of the notation F(Z:b)®
implies that the distribution of each Z is identical, which
will be true when T = I (e.g., under GMS). In the case
of markers, when T # I, the distribution of Y; at each
marker g is different, because of the marker-specific al-
lele number and frequency. To adjust for different
marker polymorphisms, each marker-specific Y; is ex-
pressed in standard form, in terms of its own mean and
variance. Thus, for each of the g markers, the convolu-
tion, Z, of the class-specific standardized Y;’s have iden-
tical null distributions.

Alternative Distributions and Power

We now define the alternative distributions of the
measure of allele sharing for a pair (X;; ), the sum within
the ith relative class (Y;), and the sum across relative
classes (Z), when at least one gene underlies the disease
trait.

Alternative distribution of X;.—In the presence of dis-
ease gene k, the alternative distribution of X;; for a
marker or clone at or near the gene is

Yo Teo O 0
¥; = TIO T11 0
Y; Ty Tu T

Dioo Diox Doz || Ao
X [Di1o Di1 Daa A |, 9)
D i20 D i21 D 22 Ai

¥, =TD; A

where, for family class i, ¥;,, = P(IBS = u|2 affected
relatives, 0). Thus, the matrix ¥; contains the condi-
tional IBS probabilities for marker locus r linked to dis-
ease locus k, given two affected relatives and recombina-
tion frequency 0. The P(2 affected relatives), denoted
“P(2 AR),” is a function of disease-allele frequency,
within- and between-locus interaction, and degree of
genetic relationship; definition of this probability is
found, in the notation used in this paper, in appendix
B. The T matrix, previously defined in equation (1), is
the same under the null and alternative distributions
of X;;, because the elements are a function of marker
polymorphism only. The D; matrix contains conditional
IBD probabilities for a disease locus k, given marker
locus 7 for the ith relative class, under the assumption
of linkage equilibrium (Bishop and Williamson 1990,
p- 258; Risch 19905, p. 231). The vector A; contains
conditional IBD probabilities for the ith relative class
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with element A;, = P(IBD = #|2 AR) and A, = O for
unilineal relatives. Definition of A;, T, and D; can be
found in other sources (e.g., Risch 1990b) and appear,
in terms of the notation of this paper, in appendix B.

Since the vector W, is, in part, a function of 0 (via D;)
and the PIC of the markers (T), it is immediately possible
to illustrate differences among genome-search technolo-
gies. For example, with use of GMS, the alternative dis-
tribution of Xj; is obtained from equation (9) by setting
D; = T = 1, in which case, ¥,, = A;, = P(IBD = #|2
AR) at locus k. In contrast, with use of I-IBD, T =1
but D; # I; and, with use of markers, T =l and D; = L.

Alternative distribution of Y;.—The alternative distri-
bution of Y;, the sum of the X;; within relative class 4,
depends on the complexity of the disease trait under
study. In the case of a single gene with no phenocopies,
Y; is distributed either as a single binomial,
Bin(n;,¥;;+¥,,), or as the sum of three-level discrete ran-
dom variables, S(n;,¥;1,¥5).

In the presence of etiologic heterogeneity, including
phenocopies and / multiple loci, the sample of affected
pairs within a relative class is actually composed of two
different groups. The first group is composed of those
pairs in which both members carry the disease genotype
at locus k and whose probabilities of allele sharing are
from the alternative distribution of Xj; in equation (9).
The second group contains those pairs in which at least
one member of the pair does not have locus & and whose
probabilities of allele sharing at locus k are from the
null distribution of X;; in equation (1). The proportion
of the sample in which both members carry the disease
gene at locus k is denoted as B;, whereas (1 — B,) is the
proportion of the sample in which at least one member
of a pair either is a phenocopy or is affected because
of a different disease locus, in the case of I > 1. The
proportion, B;, is a function of the disease-allele fre-
quency, the mechanism of gene action, between-locus
interaction, and degree of genetic relationship. Defini-
tion of B; under epistasis, locus heterogeneity, and in the
presence of phenocopies is in appendix B.

In the presence of etiologic heterogeneity (B; < 1), the
alternative distribution of Y; at or near the kth disease gene
is itself a convolution of two independent binomials or
three-level discrete random variables, depending on the
number of states of X;;. When X; takes on two values (i.e.,
GMS or unilineal relatives with markers), the distribution
of Y; is the convolution of two independent binomials,

Y,' ~ Bin(n,ﬁ;, \P,'l + ‘I’Q)
*Bin[n,;(1 — B;), 1 + W) .

(10)

In this equation and similar ones that follow, nB; is
rounded to the closest integer. In large samples, the dis-
tribution of Y; can be approximated by the normal with
expected value and variance,
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E(Y;|H,) = nB;(¥i + ¥2) + n(1 — B;)(my + m2)

Var(Y;|Hy) = nfi(Wa + ¥2)[1 — (¥a + ¥a)l
+ n(1 — Bi)(ma + mR)[1 — (my + W2)] .
(11)

When X;; takes on three values (i.e., MGMS or mark-
ers with siblings), the distribution of Y; is the convolu-
tion

Y; ~ S(nPi Wi, W) *S[ni(1 — By), i, m2] . (12)
As before, in large samples the distribution of Y; can be

approximated by the normal with expected value and
variance,

E(Y;|H;) = nfi(¥ia + 2¥2) + n(1 — B;)(my + 2mp)

Var(Y;|H;)
= nPi[WPa(l — W) + 4¥(1 — V) — 4¥a V]

+ (1 - B)[Var(Y;) |[Ho] , (13)
with Var(Y;|H,) found in equation (5). Note that, in the
case of a single gene and no phenocopies, the expected
values and variances of Y; under the normal approxima-
tion are found from equation (11) or equation (13),
Wlth ﬁ,’.

Alternative distribution of Z.—Under the alternative
hypothesis, the exact density of Z at or near the kth
disease locus is also a convolution and can be found
from equation (6), by use of the appropriate distribu-
tions defined in equations (10) and (12). Finally, in large
samples, the distribution of Z at or near the kth disease
gene can be approximated by the normal with E(Z)
= 3¢, E(Y;|H;) and Var(Z) = =, Var(Y;|H;) and with
use of the expected values and variances found from
equations (11) and (13).

Alternative distribution of Z'.—In defining the alterna-
tive distribution of the largest order statistic, Z', it is
useful to distinguish between the marker or clone that
is at or near the kth disease locus and those that are
unlinked to the disease locus. Thus we use Zg<, to de-
note the sum of the Y; at recombination distance d from
the disease locus, and we use Zo_ s to denote the sum
of the Y, for those markers or clones unlinked to disease
locus k. The specified recombination frequency, d, is
determined by marker spacing and a mapping function;
or its value is 0 in the case of a GMS technology. With
this notation, the alternative distribution of Z' in the
set of markers or clones containing the disease gene is

F(Z':b) = P(Z' < b) = F(Ze-5:b) 'F(Zo<a:b) , (14)

with power P(Z' = b) = 1 — F(Z':b). As in the null
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Power
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—a— Normal approximation to binomial convolution

—e— Exact binomial convolution

T T T T T T T T T T T T T T T T
.01 .02 03 .04 05 .06 .07 .08 .09 .1 .11 .12 .13 .14 .16 .16 .17 .18 .19 .2

Disease allele frequency

Figure 1

Power of the exact convolution and the normal approximation to detect a single autosomal codominant disease locus with a

10% population phenocopy rate in a sample of 75 sibling pairs using GMS (3,300 clones) (¢, = .05).

case, each Y; is expressed in standard form, by use of
the marker-specific mean and variance, which are a func-
tion of the number of alleles and the allele frequencies.
Since we cannot be sure which marker will lie near a
disease locus, we use the marker with the smallest PIC
value to define the standardized Y; for determining Zg<,
yielding a conservative estimate of power.

For the case of a single susceptibility locus, a more
precise definition of power in the current context is P(Z;
< Zoeas Zy < Zoays - - - 5 Zo<a = b), the probability of
the joint event that the largest order statistic equals or
exceeds its critical value b and that the marker or clone
corresponding to the largest order statistic is at or close
to the kth susceptibility locus. For the exact test, a lower
bound to this power is F(Zq- 5:b)¢'[1 — F(Zo<4:b)]. For
the large-sample normal test, this power is found from

—[E(Zo-5) — E(Zo<a)] 1\
o _ o
< {‘/Vm'(zeas) + Var(de)}) [1 — F(Zo<a:b)]

The preceding power is virtually the same as 1 — F(Z':b)
at rare disease-allele frequencies, because the probability
that a null marker or clone (i.e., Z,_ 5) exceeds by chance
both the critical value b and Z, is negligible. The num-
ber of subjects required for a prespecified power can be
computed exactly by use of the bisection algorithm, to
invert any of the above expressions of power (Knuth
1973).

Comparisons of the exact and normal approximations
of the power to detect a disease locus, across a range of

genetic parameters and sampling designs considered in
this paper, revealed inaccuracy in the normal approxi-
mation in small samples. In figure 1, we illustrate the
power to detect a single codominant disease locus with
a 10% population phenocopy rate in a sample of 75
sibling pairs, using GMS. In this example, when the
disease allele frequency is .07, as many as 48 additional
pairs of siblings are needed to compensate for the inac-
curacy of the normal approximation. These results ac-
centuate the importance of exact statistics in this con-
text. Comparisons across other classes of relatives and
models of genetic transmission show similar results in
some cases (data not shown).

If there is more than one susceptibility gene, the alter-
native distribution of Z' may differ from equation (14),
because the number of independent disease genes or
their linked DNA segments in any one set is unknown.
At one extreme, as described above, only a single gene
may be present in a set of independent markers that are
themselves unlinked to any other disease loci; at the
other extreme, all the susceptibility loci may be, by
chance, in the same set. For / genes in the same set of
independent markers or clones,

]
F(Z':b) = F(Zo=.5:b)*"" [] Fi(Zo<a:b) .

k=1

Power under the single-locus case is a lower bound to
that defined under the multilocus case; hence, for the
multilocus models presented here, we use the lower

bound.
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Results

In the following sections, we compare the power of
GMS and marker technologies to detect a susceptibility
gene, across a range of models of inheritance and sam-
pling strategies. Power curves are determined by use of
either 330 equally spaced markers arranged into 10 sets
of 33 markers or 3,300 clones arranged into 100 sets
of 33 clones. Where appropriate, the Kosambi mapping
function is used to determine 6, although use of any
mapping function is possible. Power is computed by use
of the normal approximation, unless otherwise stated.

For a clone-based GMS approach, we illustrate power
to detect a susceptibility gene by using the procedure
originally described by Nelson et al. (1993), and, in the
case of siblings, we also evaluate MGMS (N. J. Schork
and S. Ghosh, unpublished manuscript). For markers,
we illustrate power under two heterozygosity values, .9
and 1. Heterozygosity of .9 is possible for a marker with
10 equally frequent alleles, and such markers are rapidly
becoming available. Heterozygosity of 1 (i.e., I-IBD)
may be achieved in several ways: (1) parental genotyping
(e.g., in the sibling case), to identify unambiguous IBD
status in sibling pairs; (2) development of extremely
polymorphic markers; and (3) PGMS, i.e., hybridization
of GMS-selected DNA to a subset of clones rather than
to a complete set spanning the entire genome.

Etiologic Heterogeneity and Mixtures
of Relative Classes

One of the most complex situations, probably repre-
sentative of many human traits, is the presence of locus
heterogeneity as well as nongenetic causes (phenocop-
ies), in the pathophysiology of a disease trait. A general
approach to reduce the inherent loss of power in the
presence of etiologic heterogeneity is to obtain suffi-
ciently large samples to enable identification of suscepti-
bility genes that may be present only in a subgroup of
affected pairs. In light of both likely etiologic heteroge-
neity and the need to identify large samples, it may be
useful to combine different classes of relatives, to max-
imize sample-size needs. The approach presented here
allows one both to calculate the proportion of pairs in
each relative class that share the disease genotype at
locus k (i.e., B;), under a specified genetic model, and to
compute power to find a disease gene in a mixed sample
of independent pairs of affected relatives. In figure 2,
we illustrate power to detect a susceptibility gene in a
mixture of relative classes, composed of 100 sibling
pairs, 75 GPGC pairs, and 75 first-cousin pairs, under a
two-locus heterogeneity model with phenocopies, using
GMS and marker technologies. The two disease alleles
are assumed to be equally frequent, with an autosomal
dominant mechanism of gene action. Values of x at locus
1 and locus 2 are equal and are computed at each dis-
ease-allele frequency to yield a population phenocopy
rate of 10% at each locus.
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The current approach allows comparison of the power
of different search technologies, by use of a test with a
common experiment-wise type I error probability. The
three IBD approaches (GMS, GMS with MGMS for sib-
lings, and I-IBD) have very similar power to detect a
susceptibility gene under this mechanism of gene action
and model of inheritance. The power of the GMS technol-
ogy is slightly greater than the power of I-IBD at relatively
rare allele frequencies; however, at an allele frequency of
.08, the power of I-IBD surpasses that of GMS, and, at
an allele frequency of .14, it surpasses the power of GMS
with MGMS for siblings. A general comparison of these
power curves, across molecular techniques, illustrates the
dramatic gain in power by use of IBD information versus
use of IBS information, even in the presence of highly
polymorphic markers. When all three IBD states—rather
than only two—are used with siblings, the gain in power
is substantial, even in a sample composed of a mixture
of relative pairs in which siblings constitute less than half
the sample. More specific issues reflected in this figure
are addressed in subsequent sections.

Etiologic heterogeneity.—In the presence of locus het-
erogeneity and/or phenocopies, power to detect a sus-
ceptibility gene is a function of both ¥;, i.e., the IBS
probabilities, and B;, i.e., the proportion of pairs in the
sample of relatives of class i who both have the disease
genotype at locus k. In table 1, we illustrate the effect
of phenocopies and locus heterogeneity on B; and power,
under an autosomal dominant mechanism of inheritance
and 150 GPGC pairs, using GMS. Recall that, in the
case of GMS, T = D = I; therefore, ¥; = A;. We vary the
frequency of the disease allele at locus 1 while holding
constant, at .05, the disease-allele frequency at locus 2.
A population phenocopy rate of 10% is used at each
locus, in the case of phenocopies. As shown in table 1,
¥, remains constant in the presence of heterogeneity
and/or phenocopies. In contrast, B; is not constant, be-
cause it is affected by the presence of a second locus
and/or phenocopies at each locus. There is relatively
little loss in power to detect a susceptibility gene in the
presence of a 10% phenocopy rate for a single gene
when the disease-allele frequency is rare (i.e., <.1), but
the loss can be substantial at a moderately common
allele frequency (i.e., .2). This differential effect is a func-
tion of both ¥;; and B;, which decrease as the kth disease
allele becomes more common.

The presence of a second locus also has an effect on
B;, since the proportion of affected pairs that is due to
locus k will increase in the presence of a less common,
second disease allele. Obviously, when both loci have
the same mechanism of inheritance and when the popu-
lation allele frequencies are equal, B;; = B, = .5. The
simultaneous presence of locus heterogeneity and phe-
nocopies further reduces B; and power. As an example,
in table 1, power is ~50%—80% less than that found
under the single-locus case without phenocopies.
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Figure 2

Power of GMS, GMS with MGMS modification for siblings, I-IBD, and IBS to detect a disease locus in a sample composed of

100 sibling pairs, 75 GPGC pairs, and 75 first-cousin pairs, under two-locus heterogeneity with two equally frequent autosomal dominant
genes, each with a 10% population phenocopy rate (@, = .05). GMS technologies use 3,300 clones, and I-IBD and IBS use 330 equally spaced
markers or clones (10 equally frequent alleles/marker for IBS) and the Kosambi mapping function (0 = .0498).

The impact of locus heterogeneity in the absence
of phenocopies is illustrated in figure 3. In this figure,
power to detect an autosomal dominant disease locus
is given for 200 sibling pairs and 200 first-cousin
pairs, under single-locus inheritance and two-locus
heterogeneity with two equally frequent autosomal
dominant genes, by use of I-IBD.

Several points can be inferred on the basis of this
figure. First, power to detect a susceptibility gene in
the presence of locus heterogeneity is much less than

Table 1

that found under single-gene inheritance, across both
classes of relatives, particularly at common allele fre-
quencies. However, there is also a differential effect
of locus heterogeneity on power, across the classes of
relatives, which becomes less dramatic as allele fre-
quencies become more common. Specifically, at rare
allele frequencies, power to detect a disease gene in a
sample of first-cousin pairs is substantially less af-
fected by locus heterogeneity than is such power in a
sample composed of siblings.

Effect of Locus Heterogeneity and Phenocopies on B; and Power

ONE-Locus HETEROGENEITY

Two-Locus HETEROGENEITY®

10% 10%
Population Population
Locus & Phenocopy No Phenocopy
No Phenocopies Rate Phenocopies Rate/Locus
Allele
Frequence ¥, B: Power B: Power B: Power B: Power
.05 .85 1.00 1.00 94 1.00 .50 .60 .48 48
.10 .75 1.00 .99 92 .96 72 .63 .66 48
15 .69 1.00 .70 .89 49 .82 33 .74 .20
.20 .64 1.00 22 .88 .10 .88 .09 .78 .04

NOTE.—Data are for a sample of 150 GPGC pairs, with use of GMS technology under autosomal dominant

inheritance.

* The frequency of the disease allele at locus 2 is fixed at .05. Note that ¥, = 0 in this example.



852 Am. J. Hum. Genet. 58:844-860, 1996

—a— Cousins, Single locus model
—a— Cousins, Two locus model

—a— Siblings, Single locus model

Siblings, Two locus model

Power
o
1

33
2]
R
o : 1 1 T 1 1 1 1 U 1 T 1 1 1 1
l U 1 1 1 1
.01 .02 .03 .04 .05 .06 .07 .08 .09 .1 .11 .12 .13 .14 .15 .16 .17 .18 .19 .2
Disease allele frequency
Figure 3 Power to detect an autosomal dominant disease locus with 200 sibling pairs and 200 first-cousin pairs under single-locus

inheritance and two-locus heterogeneity with two equally frequent autosomal dominant genes (0w, = .05). Each curve contains I-IBD information
based on 330 equally spaced markers or clones and the Kosambi mapping function (6 = .0498).

—a— Cousins, 0%
—a— Cousins, 30%
—e— GPGC, 0%

—o— GPGC, 30%
—a— Sibs, 0%
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Disease allele frequency

Figure 4 Power to detect an autosomal dominant disease locus in the presence of 0% and 30% population phenocopy rates in 75 sibling
pairs, 75 GPGC pairs, and 75 first-cousin pairs (0, = .05). Curves contain I-IBD information based on 330 equally spaced markers or clones
and the Kosambi mapping function (8 = .0498). An exact convolution is used for each curve.
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The effect of phenocopies on power also can be iso-
lated for any of the technologies described and for any
mechanism and model of inheritance. As an illustration,
in figure 4, we show the effect of a 30% population
phenocopy rate under autosomal dominant single-locus
inheritance in 735 sibling pairs, 75 GPGC pairs, and 75
first-cousin pairs, using I-IBD. An exact test is used for
these comparisons, since sample sizes are small.

The effect of phenocopies on B; and power reveals a
different pattern across the classes of relatives than was
seen for locus heterogeneity. For example, at a disease-
allele frequency of .05, increasing the population pheno-
copy rate from 0 to 30% reduces power by 21% for
GPGC, 27% for siblings, and 39% for first cousins. This
differential effect across classes of relatives decreases as
disease-allele frequencies become more common. Thus,
for rare allele frequencies and autosomal dominant (or
codominant) inheritance, power to detect a susceptibil-
ity locus is more sensitive to the presence of phenocopies
in third-degree relatives than to its presence among first-
or second-degree relatives. The implications for re-
searchers designing a genome search is that, if locus
heterogeneity and an autosomal dominant (or codomi-
nant) mechanism of gene action are suspected, one
would achieve greater power by use of third-degree rela-
tives than by use of first- or second-degree relatives,
whereas, if phenocopies are the major concern, the re-
verse pattern would be true.

Mixtures of relative classes.—In addition to increas-
ing the sample size, mixing the relative classes may be
a useful sampling design, in light of the often un-
known genetic etiology of a disease trait. Ideally, one
would have some knowledge of likely mechanisms of
gene action and mode of inheritance; however, in the
presence of multiple loci or other complicating factors
(e.g., phenocopies), it is quite plausible that an investi-
gator’s knowledge of the actual mechanism of inheri-
tance might be incorrect at the outset of an investiga-
tion. Thus, another reason for combining classes of
relatives might be the inherent lack of knowledge of
gene action underlying a complex trait. Since various
classes of relatives have differential power under dif-
ferent mechanisms of inheritance, a mixed sample of
relatives may be more robust to misspecification of
mechanisms of inheritance. In figure Sa we show
power to detect an autosomal recessive disease gene,
and in figure 5b we show an autosomal dominant dis-
ease gene under three sampling designs: 100 GPGC
pairs, 100 sibling pairs, and a mixture of 50 GPGC
and 50 sibling pairs, using I-IBD.

If a disease trait had a 20% population prevalence,
then, under single-gene autosomal dominant inheritance,
the corresponding disease-allele frequency would be .1,
whereas under single-gene autosomal recessive inheri-
tance this frequency would be .45. From figures Sa and
Sb, it is clear that GPGC pairs are more powerful than
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siblings, under a dominant mechanism, but that the re-
verse is true under a recessive mechanism of gene action.
By selecting the power curve associated with a combina-
tion of relative types, one will achieve sufficient power
to detect a disease gene, under either of those two mecha-
nisms of inheritance. Thus, by using a mixed sampling
design, one could maximize the minimum sample size
needed to achieve a specified power that is independent
of the mechanism of inheritance.

Comparison of Technologies: GMS and Markers

We compare the power of the statistical test for GMS
technology with that of markers, with experiment-wise
o < .05. For all comparisons, we compute power under
single-gene autosomal dominant inheritance and in the
absence of phenocopies. We first compare these technol-
ogies under the marker and clone strategies previously
described for 330 markers and 3,300 clones, respec-
tively, and then we evaluate alternative search strategies.
In figure 6, we first compare the power of GMS, MGMS,
I-IBD, and IBS to detect a single gene in 100 sibling
pairs.

MGMS has greater power than either GMS or marker
strategies, for the sibling sampling design, across the
range of allele frequencies shown. Power to detect a
susceptibility gene by use of a marker strategy, whether
I-IBD or IBS, is greater than for that for GMS, at com-
mon allele frequencies. Together, these results demon-
strate the difference between technologies that measure
all three allele-sharing states (MGMS, markers) and one
that measures only two states (GMS), and they support
the development of MGMS to allow full discrimination
of IBD status among siblings. A comparison of I-IBD
and IBS curves illustrates that even a minor reduction
in heterozygosity (from 1 to .9) leads to a substantial
loss of power. Thus, the development of completely in-
formative markers, whether through MGMS or other
methods, will be critical for improving the power to
find disease genes. Finally, comparison of the power of
MGMS to that of I-IBD reveals that only a small gain
in power is achieved by complete coverage of the ge-
nome (6 = 0), a result that we subsequently will explore
in more detail.

A comparison of marker and GMS technology for
unilineal relatives (where MGMS is not applicable) is
shown in figure 7. Power to detect a disease gene is
shown for GMS, I-IBD, and IBS, in 100 GPGC pairs.
Since the actual power to detect a susceptibility gene
in a marker search depends on the distance of a marker
to a disease locus, which could range from 0 cM to
half the distance between adjacent markers, we pres-
ent upper and lower bounds on power for the IBS
case.

At rare allele frequencies GMS has greater power than
the other approaches, and at more common frequencies
it has power comparable to that of I-IBD. Thus, GMS
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Figure 5

Power to detect an autosomal recessive disease locus () and an autosomal dominant disease locus (b) with 100 GPGC pairs,

100 sibling pairs, and a combination of 50 GPGC pairs and 50 sibling pairs (0 = .05). Each curve uses I-IBD information based on 330
equally spaced IBD markers or clones and the Kosambi mapping function (8 = .0498).

may be particularly useful for investigation of rare traits.
The slight reduction in power of GMS compared with
I-IBD, at common allele frequencies, reflects both the
substantial increase in the number of test comparisons
for GMS, compared with an interval search, and the
more stringent per-comparison o required to achieve an
equivalent experiment-wise o of .05. As is also shown

in the figure, the power of an IBS marker approach does
not exceed that of GMS, even under the best scenario
of © = 0. Thus, consistent with results noted above, the
development of completely informative markers through
GMS or other methods is needed to increase the effi-
ciency of a genome search.

We have seen that IBD approaches are by far more
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Figure 6 Power of GMS, MGMS, I-IBD, and IBS to detect an autosomal dominant disease locus with 100 sibling pairs (¢, = .05). GMS
and MGMS curves use 3,300 clones, and I-IBD and IBS curves use 330 equally spaced markers or clones (10 equally frequent alleles/marker
for IBS) and the Kosambi mapping function (6 = .0498).

powerful than IBS, even at relatively high PIC values. IBS information (Risch 1990c), multipoint methods
However, obtaining IBD information from currently (Kruglyak and Lander 1995; Olson 199S5), and use of
available marker technology is difficult. This problem certain relative pairs, particularly sibling pairs, in which
has been approached in several ways, including maxi- IBD status can, in many cases, be unambiguously as-
mum-likelihood estimation of IBD probabilities from signed through parental genotyping. Since parental ge-
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Figure 7 Power of GMS, I-IBD (8 = .0498), IBS (8 = .0498), and IBS (8 = 0) to detect an autosomal dominant disease locus with 100
GPGC pairs (0, = .05). GMS curve uses 3,300 clones, and I-IBD and IBS curves use 330 equally spaced markers or clones (10 equally frequent
alleles/marker for IBS) and the Kosambi mapping function.
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Power to detect a single autosomal dominant disease locus as a function of marker density (m = 206, 412, 825, 1,650, and

3,300) for I-IBD and IBS (10 equally frequent alleles/marker) (c,, = .05). Power curves are shown for 100 sibling pairs, 100 GPGC pairs, and
100 first-cousin pairs at a disease-allele frequency of .1. The Kosambi mapping function is used.

notyping, required for the latter approach, involves an
additional genotyping effort, compared with an IBS ap-
proach (which requires genotyping of sibling pairs only),
we examined the sample sizes needed to achieve equiva-
lent power under these two methods. To obtain 90%
power under autosomal dominant single-gene inheri-
tance with a disease-allele frequency of .1, an IBS
method with marker heterozygosity of .9 would require
genotyping 190 sibling pairs, or 380 persons. To obtain
equivalent power by use of an IBD method, 177 sibling-
pair families, or 708 persons (2 parents + 2 sibs per
family) would require genotyping. This would allow for
an expected exclusion of ~20% of the families, because
of an inability to assign IBD status. Although, to obtain
equivalent power, the IBS approach requires less geno-
typing than does the IBD approach, other factors make
it less desirable; for example, findings are not robust to
misspecification of allele frequencies (Babron et al.
1993). The substantial cost, in terms of subject sam-
pling, to obtain IBD status in this way illustrates the
importance of new technologies, such as GMS, in which
IBD information can be directly obtained.

We have also seen that a GMS technology (including
MGMS), which leads to complete genome coverage, has
power similar to that of I-IBD methods with 10-cM
spacing between adjacent markers or clones. We now
address the question, What marker or clone density is
needed to obtain optimal power in a genome search? In
figure 8 we illustrate the power of an I-IBD search, as
a function of density of the markers or clones (i.e., 6)

for three classes of relatives, each of size 100, at a dis-
ease-allele frequency of .1. Power significantly increases
until the marker or clone density approaches an 8-cM
spacing (8 = .04), for all three relative classes. At that
point, power nominally increases as marker or clone
density increases. For GPGC, however, power begins to
decline as marker or clone density increases beyond 4-
cM spacing, a finding also seen at different allele fre-
quencies and under autosomal recessive inheritance. The
change in power as the number of markers increases
is a consequence of both the increased number of test
comparisons (hence, a more stringent per-comparison o)
and the decreased 6. These results suggest that adequate
power can be achieved by a PGMS procedure in which
approximately one-eighth of the human genome is used
for hybridization. These data further suggest that, as
marker genotype scoring increases in efficiency, ade-
quate power to detect a locus can be achieved by spacing
markers at ~8-cM intervals. A genome search using
more closely spaced markers achieves no substantive in-
crease in power.

Discussion

The availability of a dense set of polymorphic markers
and novel techniques such as GMS are making it feasible
to scan the human genome to detect and localize suscep-
tibility genes even when there is little a priori informa-
tion regarding the genetic etiology of a trait. However,
if a statistical test that does not explicitly control for
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the possibility of no disease gene is applied in such an
exploratory genome search, it will lead to an elevated
probability of false detection of linkage.

We have presented a general statistical approach that
is appropriate for samples of independent pairs of af-
fected relatives, that can be used with either marker
or GMS technologies, and that has an exact test. The
approach can be used with any mixture of relative
classes, any number of markers or clones, and any map-
ping function. In the presence of etiologic heterogeneity,
both the number of pairs in which both members have
the disease genotype, 7,;, and the number of pairs in
which at least one member of a pair is a phenocopy or
is affected because of a different locus, n(1 — B;), are
calculated under a specified genetic model and are used
in the computation of power. As with other affected-
pair methods, we assume accurate specification of
marker-allele frequencies for IBS data, and we assume
linkage equilibrium between a susceptibility gene and
an adjacent marker or clone. In addition, for clone-based
GMS, we assume that hybridization signals of 1-Mb-
size clones are read without error. This will, in reality,
depend on the number of GMS fragments that hybridize
to the clone, a process that will be a function of both
the size of GMS-selected fragments and other factors.
Further work is needed to incorporate a measurement
model into the statistical framework.

The approach presented here was inspired by the ele-
gant work of Feingold (1993) and Feingold et al. (1993),
who, anticipating the emergence of GMS, presented a
statistical test for localizing disease genes by using this
technology that controls for the type I error. By using
an order statistic and Gaussian approximation for the
sum of dependent Bernoulli processes, they defined
power to detect a disease locus on a chromosome, under
different models of inheritance and different sampling
designs. Using independent sets of markers or clones,
we have extended the scope of issues considered by their
approach, by incorporating both GMS and marker tech-
nologies, etiologic complexity, and exact-test statistics.

As currently formulated in this paper, power to detect
a single locus is more conservative than is power defined
by Feingold et al. (1993). We propose taking enough
subjects to have a prespecified power to detect the disease
gene itself. In the Feingold et al. (1993) definition of
power, one would take enough subjects to detect a disease
gene or any linked DNA segment on the same chromo-
some. Nevertheless, the power of the normal approxima-
tion presented here is greater than the normal approxima-
tion of Feingold et al., in some cases. For example, with
a single codominant gene, 100 sibling pairs, and GMS,
power under the Feingold normal approximation is .902
and .970 for disease-allele frequencies of .04 and .01,
respectively, whereas the respective powers under the nor-
mal approximation of this paper are .981 and .999. At
more common allele frequencies, the power of the Fein-
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gold et al. normal approximation can exceed the power
of the normal approximation presented here. For exam-
ple, at allele frequencies of .076 and .2, power is .754
and .240 under the Feingold et al. (1993) normal approx-
imation, whereas it is .696 and .048 under the normal
approximation presented in this paper.

Although our definition of power is conservative rela-
tive to that of Feingold et al., our approach has the
advantage of having an exact test. As shown previously,
the difference, in power, between a normal approxima-
tion and an exact test may in some cases be substantial,
especially in small samples. Even when the overall sam-
ple size is large, the presence of etiologic heterogeneity
can lead to a small subgroup of pairs in which at least
one member is a phenocopy or is affected because of a
different disease locus.

Finally, the model can be used either to derive practi-
cal information for designing studies of complex traits
or to examine differences in performance of existing and
emerging technologies. First, we have found that the
effect of etiologic heterogeneity on power depends on
the source of the heterogeneity and on the class of rela-
tives under investigation. Specifically, under an autoso-
mal dominant mechanism of gene action, third-degree
relatives provide greater power than first- or second-
degree relatives, in the presence of locus heterogeneity,
whereas the reverse is true when phenocopies are the
relevant issue. Second, when the mode of inheritance is
unknown, a mixture of relative classes may be more
robust to misspecification of mechanisms of inheritance
and will maximize the minimum sample size needed to
achieve a specified power. By comparing the perfor-
mance of different technologies, our results have re-
vealed a finding particularly relevant to the development
and application of GMS. Specifically, a partial GMS
procedure, PGMS, in which only one-eighth of the ge-
nome is used, has approximately the same power as does
hybridization to the complete genome. Thus, use of a
procedure that obtains IBD information from partial —
rather than complete—genome coverage will result in
no appreciable loss in power. Furthermore, even if GMS
can successfully isolate IBD information from the entire
human genome, the subsequent evaluation process could
be simplified by hybridization to 88% fewer clones.
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Appendix A

Computation of the density function of the sum of inde-
pendent discrete random variables having unequal prob-
abilities of allele sharing is required for the exact tests
of this paper. The density function can be computed by
use of a discrete convolution algorithm such as those
found in the work of Feller (1957) or Press et al. (1992).
However, these convolution algorithms are not compu-
tationally feasible for the genetic applications considered
in this paper. A convolution algorithm that is computa-
tionally feasible in this context was suggested by an
anonymous reviewer. Given the sum of independent dis-
crete random variables with limited range, say (0,1,2),
denotedas Y, = X; + X, + ... + X, the distribution
of Y, equals

P(Yui1 = i) = P(Y, = i)P(Xp1 = 0)
+P(Y, =i - DP(Xpr1 = 1)
+ P(Y, =i = 2)P(Xyi1 = 2),

where P(Y, = i) is known and is 0 if i falls outside the
range of that random variable.

For MGMS or siblings with markers, the density of
equation (4) is computed by taking Y, to be the first
three-level discrete random variable with P(Y,, = i) equal
to the elements of &;. The remaining random variables
for that relative class are added one at a time. For sum-
ming across relative classes with GMS or unilineal rela-
tives with markers, the convolution of binomials can be
computed more efficiently by taking Y, to be the bino-
mial random variable for the first class and adding one
at a time the Bernoulli random variables from the other
relative classes. In the null case of MGMS and siblings,
the distribution of the sum of the three-level independent
random variable given in equation (4) can be conve-
niently computed as Bin(2#,.5) as shown by Green and
Woodrow (1977).

Appendix B

In this appendix we present expressions needed to define
B;, the proportion of affected pairs in a sample, both of
whom have disease gene k, that is appropriate for any
mechanism of gene action, phenocopies, and locus het-
erogeneity and for any class of relatives. From these
expressions, we can define B; and (1 — B;), the latter
being the proportion of pairs in which at least one mem-
ber is a phenocopy or at least one member is affected
because of a different disease locus.

Under a single-gene mode of inheritance, P(2 AR) for
relative class i, denoted ¥;, is defined on the basis of the

Am. J. Hum. Genet. 58:844-860, 1996

allele frequencies at the disease locus, the penetrances,
and the probabilities of IBD associated with the degree
of genetic relatedness, x;. We assume that the disease
gene has two alleles with frequencies p and g, where p
represents the disease allele frequency.

The following four matrices are used to define ;:

t'=[1 a x] g =0 2rq 4
P’ pq 0 p» 0 0
G=|p’q pq p¢| MZ=|0 2pq O |.
0 pi*@ ¢ 0 0 ¢
(B1)

Under the assumption of random mating, the genotype
probabilities under Hardy-Weinberg are given in matrix
g. Penetrances are defined in the t vector, where domi-
nant, codominant, and recessive inheritance are modeled
by a = 1, %, and x, respectively. The element x repre-
sents the relative penetrance of individuals who do not
carry the disease allele compared with those who do,
according to the method of Bishop and Williamson
(1990). Thus, the absence of phenocopies is represented
by x = 0, and the presence of phenocopies is represented
by x > 0 (but understood to be <1). G is the joint
genotype-probability matrix for parent-offspring, and
MZ is the joint-genotype-probability matrix for MZ
twins.

We next define three conditional probabilities with x
= 0:

P2 AR|IBD = 0) = A = [1'(g X t)]*,
P(2 AR|IBD = 1) = B = {1'[G X (tt’)]1},

P(2 AR|IBD = 2) = C = {1'[MZ X (tt')]1},

where [ ] X [ ] indicates the hadamard product of
matrices. On the basis of these probabilities and the
known coefficients of relationship, P(2 AR) is

Kio
Yi = [AxBO Bx;-O CxBO] i1 .

Ki2

By restricting x = 0, we can define P(2 AR at locus k)

as
Kio
'Y’?" = [A = Bx=0 Cx=0] K | -

Ki2
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D; Matrix: Conditional IBD Matrix for Two Linked Loci r and k for Relative Class i

IBD AT IBD AT TRAIT Locus k
RELATIVE MARKER
CLASS ¢ Locus r 0 1 2
Sibs 0 w?*® 20(1 — o) 1 - w)?
1 o(l — o) o + (1 - @)? o(l — o)
(1 - o)? 20(1 — o) o’
Grandparent-
grandchild 0 (1-9) 0 0
1 0 (1-90) 0
2 0 0 0
Aunt-niece 0 (1l —0) + %6 1-%06-w(1-20) 0
1 1-%0—-w(l-296) o(l —0) + %6 0
2 0 0 0
Half sibs 0 ®» (1- o) 0
1 (1 - o) ® 0
2 0 0 0
First cousins 0 B2 + %h6* + o(1 — 6)}] %1 - %e* — (1 — 6)}] 0
1 1 - %6 - ol —0)? o(l —6)® + 1,e? 0
2 0 0 0

‘o=0"+(1-0)>~

In v; the x in the penetrance vector t is free, and in ¥},
x is fixed at zero.

In general, B, is a function of y; and y¥. As an exam-
ple, for single-gene inheritance with phenocopies, B;
= y*/v;, the proportion of affected pairs of relative
class 7 in which both members carry the disease gene
k; that is, neither member is a phenocopy. We can
also define B; in the presence of I disease loci under
locus heterogeneity and epistasis, with or without phe-
nocopies. In the presence of more than one disease
locus, the matrices in equation (B1) can be defined
for each of I unlinked disease loci, where I = 1,k. The
P(2 AR), i.e., ¥, is a function of the between-locus
interaction, which can be modeled through penetrance
functions, either as the union of individual pene-
trances (i.e., heterogeneity), according to Risch
(19904, p. 225; Genetic Heterogeneity Model), or as
the product (i.e., epistasis), according to Hodge
(1981) and Risch (1990a4). For convenience, we intro-
duce the subscript k in the following definitions of B,
to differentiate among the / loci.

For the kth locus among a set of / heterogeneous loci,

Bi-_-, iz

—.
2 Yk = 22 Vi + ZZZ Yol =55 + (=1 kH Yie
= =1

Notice that, when [ = 1, B; reduces to that shown pre-
viously for the single-gene case in the presence of pheno-
copies.

For the kth locus among a set of [ epistatic loci,

B 'Y;Z'Y,'m...'Yg='Y_,-2

VY e Ya Vi

In this case B; is equivalent to that shown for the single-
locus case, since, under epistasis, all loci are necessary
for determination of the trait.

Using the notation of the present paper, we define A;,
the vector of conditional IBD probabilities for the ith
relative class holding x = 0 at the disease locus &, as

Ao (Ax=okio )
A= A | = | (Beooki )y (B2)
Ay (Camoki )Y

Definition of ¥;, the IBS probabilities at a marker or
clone r linked to disease locus k at recombination fre-
quency 0, can be defined analogously with x = 0,
through equation (9), by use of A;, T, and D;. The ele-
ments of the matrix T have been defined by Bishop and
Williamson (1990, p. 255), A; is defined in equation
(B2), and D; is provided in table B1, in terms of the
notation used in this paper.
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