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Summary

The present article discusses the use of computational
methods based on generalized estimating equations
(GEE), as a potential alternative to full maximum-likeli-
hood methods, for performing segregation analysis of
continuous phenotypes by using randomly selected fam-
ily data. The method that we propose can estimate effect
and degree of dominance of a major gene in the presence
of additional nongenetic or polygenetic familial associa-
tions, by relating sample moments to their expectations
calculated under the genetic model. It is known that
all parameters in basic major-gene models cannot be
identified, for estimation purposes, solely in terms of
the first two sample moments of data from randomly
selected families. Thus, we propose the use of higher
(third order) sample moments to resolve this identifi-
ability problem, in a pseudo-profile likelihood estima-
tion scheme. In principle, our methods may be applied
to fitting genetic models by using complex pedigrees and
for estimation in the presence of missing phenotype data
for family members. In order to assess its statistical effi-
ciency we compare several variants of the method with
each other and with maximum-likelihood estimates pro-
vided by the SAGE computer package in a simulation
study.

Introduction

Much work in population genetics, beginning with
Fisher (1918), has described the relationship between
parameters in a major-gene model and the resulting phe-
notype covariances between relatives. Since that time
there has been considerable further development of
method of moments approaches toward estimating pa-
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rameters in genetic models, in both segregation analysis
(see Whittemore and Gong 1994) and linkage analysis,
(see Amos 1994). However, since the introduction of
recursive algorithms for evaluating likelihoods for genet-
ics models (Elston and Stewart 1971, 1978), the method
of maximum likelihood (ML) has been the most popular
approach to parameter estimation.
The generalized estimating equations (GEE) technique

(Liang and Zeger 1985; Prentice and Zhao 1991) is a
general approach for the estimation of model parame-
ters by using only sample moments of the data, by mod-
eling expectations, rather than maximizing the parame-
ters in the complete distribution of correlated responses
as in ML. Recently, Zhao (1994) offered a detailed, but
overly optimistic, suggestion for the use of the first and
second moments (what is often termed a GEE-2 proce-
dure), for performing segregation analysis of major-gene
models for data from randomly selected human pedi-
grees. As indicated by Zhao (1994), one motivation for
a GEE procedure for segregation analysis is that, since
GEE-2 requires only the correct specification of the ex-
pectations of the first two sample moments, it may be
more robust to model misspecification than is the fully
parametric ML approach. Unfortunately, however, the
three parameters needed to specify even the most basic
major-gene model-namely, the allele frequency, domi-
nance mode, and genetic displacement (difference be-
tween phenotype means for AA vs. aa genotypes)-are
not mutually distinguishable from only the phenotype
means, variances, and covariances used in GEE-2. The
implication of the analysis of Lee et al. (1993), for exam-
ple, in the segregation analysis of continuous pheno-
types, is that if the dominance mode is known to be
additive (with the phenotype mean ofaA genotypes mid-
way between AA and aa), there remains exact aliasing
between the allele frequency and the displacement pa-
rameters, when using GEE-2. That is, only one of these
two parameters can be estimated, even when the domi-
nance mode is known. For other dominance models the
aliasing in GEE-2 between the allele frequency and dis-
placement parameters, while not exact, is still close
enough so as to make simultaneous estimation of these
parameters by using GEE-2 essentially impossible.

Lee et al. (1993) describe a pseudo-profile likelihood
method for continuous phenotypes that estimates both
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the allele frequency and genetic displacement in major-
gene models still under the assumption that the domi-
nance model is known. This iterative two-stage method
uses the first two sample moments, i.e., GEE-2, with one
parameter (the allele frequency) fixed, at the first stage
of each iteration, and then in the second stage of each
iteration estimates the allele frequency by maximizing a
very simple pseudo-profile likelihood. In order to allow
for the estimation of the dominance parameter and, in
addition, to allow for residual, nongenetic correlation
between the phenotypes of family members, generally
due to unmeasured environmental covariates shared
among family members, Stram et al. (1993) suggested
that additional higher moments would need to be uti-
lized, beyond those incorporated into GEE-2, in the first
stage of the estimation procedure. The present study
details the implementation of this suggestion (using first,
second, and third sample moments, i.e., GEE-3), and
provides a simulation study in which the estimates from
the proposed method are compared with the approxi-
mate ML estimation (MLE) given by the SAGE package
(Elston 1992).

In many cases the use of GEE methods is motivated
by a desire to provide consistent estimates of specific
model parameters of interest without having to specify
the complete distribution of the correlated data. Our
focus on the exploration reported here, however, is on
fitting exactly the same parametric models that are used
in MLE. Thus, in the simulation study we choose the
"regressive" model for residual familial correlation
(Bonney 1984) that is implemented by the MLE package
SAGE. Our aim is to begin to evaluate the statistical
efficiency of GEE methods when the segregation model
is fully specified. We do not attempt here to compare
the robustness of the GEE versus ML when the model
is misspecified, but this is clearly a claim that will require
further investigation. Besides statistical efficiency, it will
be important to compare the computational efficiency
of GEE with ML. We begin this evaluation in the simula-
tions. In particular, we address the trade-off in efficiency
versus computational gains achieved as the number of
higher (third-order) moments used in the "working vec-
tor" of the GEE machinery increases.

Models for Familial Association Involving Major
Genes and Residual Association

The Major-Gene Model
Consider a continuous phenotype Yij for a member j(j

= 1, 2, .5., Ji) in a randomly sampled family i(i = 1,
2, ..., I). The major-gene model, the parameters of
which are to be estimated in the course of the segregation
analysis, is specified in terms of a conditional model for
the phenotype in light of a major locus genotype gij and

a covariate vector xi, represented by the following linear
function:

Yij = J + xtja + PI{fg,,(d) - m(d, p)} + e,,. (1)

Here, fg&j(d) is the penetrance function of the major locus
allele taking values 0, d, and 1 for the major locus geno-
types aa, aA, and AA, respectively. d is the degree of
dominance of the allele A with respect to the allele a,
which takes 1 if allele A is dominant, 0 if recessive, and
0.5 if additive. m(dp) is the mean of the penetrance
function, Xg51 fgjP{gij p}, where PI{g, p) is the popula-
tion genotype probability. The parameter P is the differ-
ence in means between genotypes aa and AA (genetic
displacement), and p is the population frequency of the
major locus allele A. The ei, is an error term and is
assumed to be independent and identically distributed
(iid) from a normal distribution with mean 0 and vari-
ance ae2.

Mixed Major-Gene Polygenetic Models
for Residual Correlation

In a polygenic model for residual correlation between
family members a new random variable, yii, which we
term a polygenotype, is added to the model in equation
(1), which denotes either the action of a polygene, that
is, the summary result of a large number of genes each
of which have a small influence on the phenotype, or an
unobserved covariate, which tends to be shared among
family members, with the degree of sharing related to
the degree of relationship between family members. The
joint distribution of the vector of the quantitative poly-
genotypes for each family, (il, Yi2, .. ., YiJi) is assumed
to follow a multivariate normal distribution with mean
0 and covariance matrix

1 P12 P13 * P1Ji
P21 1 P23 * P21i

ay2 P31 P23 1 P31i = % .

WPmi P1i2 P1i3 * 1

In a true polygene model, the correlation, Pik, between
yy and Yik, will be equal to (1/2)R(ik), where R(jk) is the
degree of relationship between family member j and k.
(That is, (1/2)R(ik) is the expected fraction of shared genes
between these two family members.) The model for re-
sidual correlation may take other forms, however. For
example, it is common to include a nongenetic environ-
mental factor being shared by siblings within common
parents or to allow for correlation between spouses
(nonrandom mating). Of course, identifiability of multi-
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Figure 1 Three-generation family structure pedigree used in sim-
ulation of family data for illustration of the method.

levels of residual correlation in a finite data set is prob-
lematic for ML methods as well as the methods de-
scribed here.

Regressive Models
Regressive models for residual dependence replace the

two terms, eii and y7i, with a single term, ,ij, where w,,

is assumed to follow an autoregressive type process, and
the rest of the assumptions are the same as those in
equation (1). If random assortment is assumed, ,ij can
be expressed as

)ij= P()ik + EiiX

where the member k is a first-degree relative to the mem-
ber j, p is a correlation between any first-degree relative
pair, and Sb# is an iid normal random variable with mean
o and variance ac. Therefore, the joint distribution of
((O~il ,(i2, *... , cij,) is multivariate normal with mean 0.
The covariance matrix of this distribution, in the case

of an eight-member sample pedigree structure (see fig.
1), will be
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where each position of row or column of this matrix
represents the corresponding member index in the pedi-
gree. When p is zero, the residual covariance structure
ciIi describes the pure random error structure of the
simple major-gene mechanism of equation (1). Like the
mixed model, the regressive model may be modified to
allow for sibling correlations different than correlations
between parents and offspring, for example, to give
what Bonney (1986) terms a class D model in which
additional sibling effects, given common parentage, may

be present equally among all siblings. While both the
mixed model and the regressive model can be thought
of as providing alternatives to the major-gene model,
which allows for additional familial correlation beyond
what is attributable to the action of a major gene alone,
these models are distinct in that neither can be regarded
as a special case of the other. In general, ML computa-
tion under the regressive model is considerably simpler
than under the mixed major-gene polygene model (Els-
ton 1992), and the regressive model forms the basis for
the SAGE program.

Estimating Equations Approach to Fitting a Simple
Major-Gene Model

In general, as described in detail in Lee et al. (1993),
it is not possible to estimate all parameters in the model
of equation (1) by using only either the sample means in
a GEE-1 procedure or the sample means and covariances
(GEE-2). In particular, Lee et al. (1993) finds that, of
the three genetic parameters, I, d, and pI in the model
of equation (1), only one of these at a time is readily
identifiable from the first two sample moments; no two
can be simultaneously estimated from their effects upon
the expectations of only these moments. For example,
in order to estimate I, using GEE-2, both the degree of
dominance, d, and the population allele frequency, pI
must be assumed known. In order to estimate both 1
and pI with d still remaining fixed, Lee et al. (1993)
proposed a pseudo-profile likelihood approach to esti-
mating p. For a discussion of pseudo-profile procedures,
see, for example, Gong and Samaniego (1981).

In order to justify the application of two-stage GEE-
based methods toward fitting the parameters in equation
(1), consider MLE of p by maximizing the profile likeli-
hood, C((p,P) for the entire sample (founder and non-
founders). Here, Op denotes the MLE vector, with p
fixed, for all the other parameters in the simple major-
gene model. If fff(ep) denotes the likelihood for the
founders only, then the following score equation holds
at the MLE of p:

d

=~~~Pa<~ P ) x apOp + fpw,(Ep, p)aep ap ap

Note that conditional on parents' genotypes, the off-
springs' genotype distributions depend only on Mende-
lian transmission probabilities and do not depend on
p. This suggests that it may be possible to restrict our
estimation of pI in light of known values of the other
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parameters, to use only the data concerning the pheno-
types of the founders and ignore the phenotypes for
the nonfounders. That is, we approximate the partial
derivative

ap eO,)(Ep p) (3)

as

(4)

and estimate p and e by finding values that satisfy the
condition

a =
ap (f(Ep, p) = 0 . (5)

This procedure first picks an initial value of p, then
maximizes (f(Op,p) to estimate the remaining parame-
ters as Op, and finally updates the initial value of p by
solving the equation (5). The further suggestion of Lee
et al. (1993) is, with the degree of dominance parameter
d still regarded as fixed, to replace ,_ in the profile
likelihood with GEE-2-based estimates, (3p, of (3p (stage
1 of the procedure) and to perform a second maximiza-
tion in stage 2 to solve

a
ap (f(ep, P) = 0 . (6)

Since the calculation of partial derivatives for f(EA,p) is
less difficult than evaluating e( ,(E,p), it is suggested that
the combined procedure may be computationally more
efficient than maximizing the full likelihood, while, it
is hoped, maintaining a reasonable level of statistical
efficiency. The statistical efficiency of the proposed pro-
cedure will depend on the validity of the two approxima-
tions used; the first is the approximation of Op with
O9p, and the second is the approximation of the partial
derivative in equation (3) with the partial derivative in
equation (4).

If only the first two sample moments are used in esti-
mating Op Lee et al. (1993) indicate that d remains
unidentifiable in the first stage. Lee et al. (1993) explored
the possibility of estimating d as well as p in the second
stage. We suggest here, however, that a more direct ap-
proach toward estimating the degree of dominance is to
include the estimation of d in stage 1 by incorporating
model-based expectations for the third sample moments,
in a GEE-3 procedure. We detail this suggestion below.

Estimating Equations: Stage 1
First, consider the simple major-gene model. The gen-

eral approach of the estimating equations technique is
to estimate parameters in the model without resort to
maximizing the full likelihood for y but rather by dealing
with these parameters only as they affect the marginal
means, variance, and covariances of y,, or (as here)
higher moments of Yij. For the simple major-gene model
the phenotype mean vector of yi for the ith pedigree may
readily be seen to be equal to

Ei = 1 + Xia.

The variance covariance matrix of the phenotype vector
yi for the ith pedigree equals

1i= 32Ci(dp) + cTIeIi

where the first part is the major genetic component and
the second part is the nongenetic component. In the
major-gene model the nonzero phenotype covariances,
Ci(d,p) are functions of the allele frequency p and the
degree of dominance d in the penetrance function. The
covariance of founders (those family members whose
parents are not in the pedigree) with each other, and
with all other members except their descendants, are
assumed zero (no assortative mating). Under the ran-
dom-mating assumption, these major genetic covari-
ances are defined by

Ci(d, P)(i) = X [fg - m(d, p)]
gjgk

X [fgk - m(d, p)]P{g , gk I P}

By subtracting off m(dp) in the conditional model equa-
tion (1), the phenotype means contain neither the allele
frequency p nor the genetic displacement A, so that it is
only the variances and covariances, and higher mo-
ments, that contain information about either p or P.
The GEE-2 procedure (Prentice and Zhao 1991)

yields estimating equations,

E DVW-'zi = 0, (7)

where Di is a matrix of partial derivatives of expecta-
tions of means, variances, and covariances with respect
to the parameters being estimated; zi is a vector of
"working variables" (deviations between the observed
data and their contributions to the variances and covari-
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Table 1

Expectations of the First Three Sample Moments

Mixed Regressive

Ei g1 + Xja g1 + Xja
x:i pi2Ci(d, p) + skiP, + <<Ii p2Ci(d, p) + &(f,
ri p3Tj(d, p) p33Tj(d, p)

ances, and their respective model predictions),

y - (1 + Xia)I
Vec(Si- zi) /

and Wi-1 is a weight matrix, which optimally is taken
as a generalized inverse of the model-based covariance
matrix of the working vector. Denote VecIM), for ma-
trix M, as the vector composed of the columns of M.

In order that d as well as ,3 be identifiable in the
first stage of the procedure, we consider the addition of
sample third moments to the working vector, zi, and the
corresponding enhancements of the other components
of the GEE machinery: Di and Wi '.

GEE-3 in Stage 1
For the mixed major-gene polygene model and the

regressive model, the expectations of the sample means,
variances and covariances, and third-order sample mo-
ments (Ei, li, and Fi) of the phenotypes to be used to
define the estimating equations are given in table 1.
As we see in table 1, both models have same expecta-

tions of the means and third moments. The expected
third moments are defined as

17i(klk) = E{[yij -E(yij)] [Yik - E(yik)][yil-Eyilff,
for all triples (i, k, and 1),

where the elementary form, for example [y# - E(yy)], can
be written as either 0 fg(d) - m(dp)] + yi + eii, for the
mixed major-gene polygene model, or 3[fgj,(d) - m(dp)]
+ oij, for the regressive model. Since we assumed both yij
and Dio have multivariate normal distributions independent
with the penetrance function fe,,, and the random error
term ei, (for the mixed major-gene polygene mixed model),
the remaining nonzero terms are

3E{[ fg,,(d) - m(d, P)] [ fgik (d) - m(d, p)]
X [fg,1(d) - m(d, p)]} = j33Ti(d, P)(jkl)

These marginal third moments consist of the major ge-
netic three-way covariances multiplied by the cube of

the genetic displacement. The major genetic three-way
covariances, Tj(dp), are defined by

I [ fg,, (d) - M(d, P)] [fgik (d) - m(d, p)]
giigik,gil

x [fgj (d) - m(d, p)]P gij, gik, gik} -

The GEE-3 estimating equation is now defined as

(8)E fxtj--li = O.
i=l

Each matrix of the estimating equations is defined be-
low. For the regressive model

Ea tgl + Xii}1
aeP (Jixq)

9 Vec{2Ci + a2Qi

[ d Vec3T IJxq)

The vector ii =

[{yi - gi - Xia](Ji x 1)
[Vectfyi - il - Xia}{yi - gil - Xia1t - J2C, - &.Qil](JXl)

[Vect(yi - 0 - Xia} 0 {yi - g1 - Xia) X {Jy - til - Xia) I)

contains the "working variables" (deviations between
the contributions to the sample means, variances, co-
variances, and the third moments, and their respective
model predictions). The formulation for the mixed ma-
jor-gene polygene model is similar to the regressive
model except that the a2Qi is replaced by acI' + cI
The derivatives given in the expression for Di are cal-

culated by direct summations over the possible values
for the genotypes for the family members. Thus, for
example, under the regressive model for residual correla-
tion, 3/ddCi, the partial derivative of the expected fa-
ther-offspring major genetic covariance, a/hdCi, is

ad YgFYgmgoI[giF(d) - m(d, p)][fgo(d) - m(d, p)]}

X P{gF)P{gM )P {go190gF, gM}

=g gI goI ad [fgF(d) - m(d, p)]

x [fgo(d) - m(d, P)] + [fgiF(d) - m(d, p)]

x a [fgo (d) - m(d, p)I}
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X P{gF)P{gM}P (gO[ IgF, gM}

9gF9gMYgO ([I(gF=aAj - 2p(1 - p)][d I(gjO=aA}
- p2 - 2dp(1 - p)] + [d I(giF=aA) - p2
- 2dp (1 - P)I[I(go=aAI - 2p(l - p)]}

X P{gFP9{gM}P(goIgF, gMI}

Here, the probabilities, P Igo gFvgm) reflect the usual
Mendelian inheritance rules. The other partial deriva-
tives, in bi, of the expected second and third moments
can be calculated similarly.
The weight matrix W-1 would ideally be chosen as a

generalized inverse of the variance-covariance matrix of
ii. Since calculating an optimal weight matrix from first
principles is quite complex, we consider below several
approximations to the optimal weight matrix, for practi-
cal computational purposes.

Stage 1 of the pseudo-profile likelihood estimation
procedure solves the estimating equations for the param-
eters, ep = (p,, ap,, 1p, dp,, 5p pp)t, by Fisher's scoring
with p fixed,

O~k+1 = ok _( tli IDtili 9

and stage 2 estimates p by maximizing the founders'
profile likelihood explained below.

Estimation of the Allele Frequency: Stage 2
In the stage 2 estimation of p, only founders are used

in our approximation. This likelihood function is a mix-
ture of three univariate normal likelihood functions with
mixing proportions (1 _ p)2, 2p (1 - p), and p2, which
are corresponding probabilities of the three possible ge-
notypes, i.e.,

L(p, Si, dcp, ppOp , X

= zfunder {(1 _ p)2.

isifounder P

Yi - R- xp - Pp(f.(d) - m(d, p))1

XL
+ 2p(1 - p)~*.e 4* Yi - - Xxp - p(faA(d) - m(d, p))1

+p2.i.*4Yi- Ap -Xp - Op(fAA(d) - m(d, p))1}

The entire estimating procedure is an iterative two-stage
optimization in which stage 1 of each iteration solves the
estimating equations for the parameters in the means,
variances, and covariances by Fisher's scoring with p
fixed and the stage 2 estimates p, by maximizing expres-
sion (10).

Sampling Variances of the Estimators
On the basis of general results (Huber 1981) for M-

estimation, the asymptotic variance covariance matrix
of the parameter estimates in the two-stage GEE-based
pseudo MLE procedure is given as the so-called informa-
tion sandwich

I-lS I-1"

The modified information matrix, I+, is the nonsymmet-
ric matrix consisting of the partial derivatives of the
two equations being solved, equations (8) and (6) with
respect to the model parameters

I+ = a,,),ii-D ) a2 t(@P)pF P)]~~~

while S+ contains the cross-products of the GEE-3
scores, tWy1zii, in equation (8) and the individual score
contributions in equation (6).

DtW, liiitwg 1D, (E2ib~WT'.i)(- ef(OP, P))]
S+ L(a t a eoP )

is the "naive" sampling variances covariances matrix
estimated from the data.

Computational Considerations

As given in equation the estimation of parameters, A,
a1, a2, 51, d, and &2, in the first stage of the estimating
equation, involve the manipulation of rather large matri-
ces. For example, each working vector, ii, correspond-
ing to the simple three-generation pedigree shown in
figure 1 is nominally of length 8 + 82 + 83 = 584, with
the derivative matrix Di and the corresponding weight
matrix, W- of size 584 x 6 and 584 x 584, respectively.
In fact, however, it is not the number of individuals,
but rather the number of unique types of relationships
between individuals, which determines the number of
distinct elements that need to be included in ii and the
other matrices. For example, there are six distinct two-
person family relationships among individuals in figure
1, namely, self-self, parent-offspring, sib-sib, grandpar-
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ent-grandchild, uncle-nephew, and cousin-cousin. Thus
the size of the portion of the working vector, ii, which
corresponds to the sample covariance matrix, Si, may
be reduced by summing together equivalent contribu-
tions to Si. Similarly, the number of distinct three-person
family relationships contained within this pedigree
structure is far less than 83. In general, we can sum
together the jth row of ii, for all j where rows of bi are
identical and where the corresponding rows and col-
umns of Wi are the same, while simultaneously summing
together the corresponding rows of Di, and rows and
columns of Wi. For large extended pedigrees where the
number of distinct relationships between family mem-
bers becomes large, further reductions in computations
may be made by simply dropping the contributions cor-
responding to distant relationships. This computational
savings would come at the cost of some reduction in
statistical efficiency. The issue of which third-order mo-
ments to include in the working vectors for pedigrees
given in figure 1, is explored in the simulations below.
The next computational issue we explore in the simu-

lations is a comparison of several alternative forms of
the weight matrix, Wi. First of all, it appears to be quite
important not to include higher-order sample moments
in estimates of parameters that are already well esti-
mated on the basis of the first and second moments
alone. Thus, in the following, we always break up the
updating of the parameters in stage 1 into two parts, so
that for all parameters except for d and P the GEE-2
estimates from equation (7) are used rather than the
estimates from equation (8). In the simulations described
below we compare the use of three different versions
of the weight matrix in the updating of the parameter
estimates in equation (8).
1. An optimal weight matrix is taken as a generalized

inverse of the true covariance matrix of ii. We
closely approximate this matrix by simulation. For
the simulations described below we generate a large
number of ii from the eight-person pedigree in fig-
ure 1 and calculate the observed covariance matrix
of these vectors, using the true values of the parame-
ter estimates, when calculating ii.

2. A second weight matrix is based on the (erroneous)
assumption that the ii are distributed as the first,
second, and third sample moments of a multivariate
normal random vector having mean Ei = 1 + Xia
and variance covariance matrix 1i = f32Ci(dp) +
a2Qi. That is, we use a generalized inverse of a
matrix made up of the second to sixth moments of
the multivariate normal distribution, in forming

3. Last, we use the empirical covariance matrix of the
ii calculated for each simulated data set.

Because the weight matrix in version 1 is based on true

1 1 2

3 4

Figure 2 Nuclear family structure pedigree used in simulation
of family data for illustration of the method.

parameter values it is unachievable in practice for a real
data set and is used here as a "gold standard" for evalu-
ating the performance of the other methods. The other
versions of W. 1 use the estimated values of the parame-
ters obtained for each simulated data set at each itera-
tion of the estimation procedure. Finally, we estimate
parameters in the model by the use of ML provided by
the SAGE package.

Simulation

Data Set and Parameters
We performed simulations using the three-generation

pedigree structure shown in figure 1 and the nuclear family
pedigree structure in figure 2. In each case we simulated
100 data sets consisting of either 200 three-generation fam-
ilies or 400 nuclear families. A phenotype was generated
under the regressive model equation (2). The population
phenotype distribution conditional on the major genotype
and shared environmental factor was assumed to be nor-
mal, N(gg,ac = 1.125), where JAA = gaA = 6, and baa
= 2, respectively (d = 1, g = 5, and I8 = 4). The parent-
offspring transmission of the major allele A with the allele
frequency p = .5 was assumed to follow Mendelian inheri-
tance. As additional correlations between members, not
due to the major gene, a Markovian structure with first-
degree relations having correlation of 0.5 was assumed
and fixed, i.e., Pyk) = 0.5R(k), where R(jk) is the degree
of relation between members j and k. Thus, cY2 = 1.5 in
equation (2). Since we assumed the complete dominance
(9AA = ltaA) of the major allele A to allele a with respect
to the phenotype, the additive major genetic variance c(;
= 2pq3 = 2 x 0.5 x 0.53 = 0.125, and the dominant
major genetic variance cad = p2q2 = 0.52 X 0.52 = 0.0625.
The total phenotypic variance for an individual is a2(o
+ ad) + 2 = 42 X (0.125 + 0.0625) + 1.5 = 4.5; hence
the heritability h = 3/4.5 = 0.67. Two binary dummy
covariates, x1 and x2, representing the second and third
generations, respectively, were created. The covariate ef-
fects on the phenotypes were chosen to reduce the mean
by -1 and -2 from the top generation mean (a1 = -1;
and a2 = -2).

Results
Table 2 displays all 19 possible third moments corre-

sponding to the types of relationships given in the three-
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Table 2

Third Moments Included in the GEE3: Eight-Member Three-Generation Family Structure Pedigree

Third Moments GEE3-3 GEE3-11 GEE3-19

Self 3 In In In
Mother-father-offspring In In In
Parent-sibl-sib2 In In In
Grandmother-grandfather-grandchild In In
Grandparent-parent-grandchild In In
Parent-uncle-nephew In In
Cousin-uncle-cousin In In
Grandparent-uncle-cousin In In
Grandparent-cousinl-cousin2 In In
Grandparent-parent-uncle In In
Grandparent-parent-nephew In In
Parent2-offspring In
Parent-offspring2 In
Sibl2-sib2 In
Grandparent2-grandchild In
Grandparent-grandchild2 In
Uncle2-nephew In
Uncle-nephew2 In
Cousinl2-cousin2 In

generational family pedigree shown in figure 1. Table 3
gives three results of estimating the parameters in the
regressive model with p fixed by 0.5, using three differ-
ent choices of the third moments to include in the work-
ing vector. In this table the estimates indicated by D
for the SAGE estimation are indirectly derived estimates
(SAGE provides mean estimates conditional on the ge-

notypes, i.e., aa, fRaA5 and BAA, instead of i, P, and d).
Thus, the SE2s for these estimates are the averages of the
square of derived standard errors using a delta method
approximation. The results labeled GEE3-3 correspond
to using, in the working vector, the first three sample
moments in table 2: self-self-self, mother-father-off-
spring, and parent-sib-sib. The results labeled GEE3-11
use the first 11 moments in table 2, and the GEE3-19
results use all 19 possible third sample moments. In table
3 the weight matrix used is the gold standard (method
1). Note that there is no gain in efficiency in estimating
the nongenetic parameters, ji, a1, a2, or c2 as more

higher moments are added to the working vector, which
is not altogether surprising given that only GEE-2, i.e.,
equation (7), is used in updating these parameters esti-
mates in the iterations. For the genetic parameters, P
and d, a small gain in efficiency (as measured by the
mean squared error [MSE] of estimation) is seen as the
number of sample moments used increases from 3 to
19, but the gain appears to be relatively unimportant.
For allele frequency, p, there is virtually no gain ob-
served as the number of sample moments is increased.
Bias in the parameter estimates using the GEE-3 meth-
ods does not appear to be very great for any of the model
parameters. For all parameters except p, the information
sandwich-based estimates of the variance of the param-
eter estimates and the 95% confidence intervals were

reasonably accurate relative to their observed variances
in the simulations.

Tables 4-7 illustrate the impact on estimation (only
for the A, d, and &2) of choosing among the three variants

Table 3

Third Moments Included in the GEE3: Four-Member Nuclear Family Structure Pedigree

Third Moments GEE3-2 GEE3-3 GEE3-4 GEE3-5 GEE3-6

Self 3 In In In In In
Mother-father-offspring In In In In In
Parent-sibl-sib2 In In In In
Parent2-offspring In In In
Parent-offspring2 In In
Sibl2-sib2 In
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Table 4

Summary of Model Fitting in the Simulation: Analyzing Eight-Member Three-Generation Family Structure Pedigree

95% Confidence
Interval Coverageb

Parameter True Method D/Ia Mean Variance SE2 MSE (%)

rGEE3-3 I 4.996 .0098 .0087 .0099 94
I GEE3-11 I 4.996 .0096 .0086 .0096 94

5.0 1 GEE3-19 I 4.997 .0098 .0087 .0098 94
LSAGE D 4.989 .0065 .0116 .0066 92

GEE3-3 I -1.009 .0084 .0079 .0085 97
a
GEE3-11 I -1.008 .0082 .0079 .0083 97al -1.0 GEE3-19 I -1.007 .0082 .0081 .0082 98

ISAGE I -.998 .0017 .0019 .0017 97

rGEE3-3 I -2.015 .0140 .0132 .0143 95
)2GEE3-11 I -2.015 .0140 .0132 .0142 95a2 -2.0 1 GEE3-19 I -2.017 .0147 .0134 .0150 94

ISAGE I -2.005 .0045 .0043 .0046 97

rGEE3-3 I 4.062 .1161 .1759 .1199 99
54)0 GEE3-11 I 4.059 .1215 .1392 .1250 99

GEE3-19 I 3.893 .0716 .0657 .0831 89
SAGE D 4.010 .0233 .0214 .0234 95

rGEE3-3 I 0.992 .0085 .0078 .0085 96
) GEE3-11 I 0.993 .0082 .0071 .0082 96d 1.0 1 GEE3-19 I 1.025 .0066 .0049 .0073 91

ISAGE D 0.993 .0012 .0011 .0012 92

GEE3-3 I 1.459 .0389 .0891 .0406 99
) GEE3-11 I 1.457 .0500 .0710 .0519 95S21.5 1 GEE3-19 1 1.519 .0428 .0433 .0432 94

SAGE I 1.490 .0044 .0033 .0045 91

GEE3-3 I .5015 .00055 .00213 .00055 96
) GEE3-11 I .5014 .00055 .00235 .00055 95

0.5 1GEE3-19 I .5005 .00056 .00182 .00056 99
SAGE I .4991 .00028 .00023 .00028 93

a D = indirectly derived parameters in SAGE; and I = independent parameters.
b The percentage of 95% confidence intervals that included the true value.

of the weight matrices, Wi, used in the simulations dur-
ing stage 1. In this elaboration, the GEE3-2 to GEE3-6
methods (tables 5-7) used third moments listed in table
4. As expected, both method 2 (assuming multivariate
normality) and method 3 (empirical covariances) show
some loss of efficiency relative to the unattainable gold
standard (method 1). It is interesting that method 3
tended to introduce somewhat more bias in the genetic
parameter estimates than did method 2, but the overall
MSE of estimation with method 3 was generally better
than method 2.

Discussion
This paper has continued the exploration of the use of

GEE-based methods for segregation analysis which was
begun by Lee et al. (1993) and Whittemore and Gong

(1994). The ultimate usefulness of these methods depends
on how well they live up to their claims of robustness
against violations of model assumptions while still pro-
viding reasonable statistical power, relative to such
model-based approaches as the method of ML. We have
not attempted to evaluate their robustness here but have
focused our comparisons on their efficiency, compared
to ML, when the correct likelihood model is known. In
this situation the GEE-3 methods we have described are
substantially outperformed by the MLE (table 3). For
example the GEE-3 -based MSEs for the genetic parame-
ters, p, f3 and d, using all 19 third moments, ranged from
two to six times as large as those obtained from SAGE.
It appears that the main loss of efficiency in the GEE
methods comes about because of poor estimation of the
dominance parameter, d. Another possible explanation
of the efficiency loss is that the founders-only method
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Table 5

Summary of Simulation Analyzing Four-Member Nuclear Family Structure Pedigree Data
Using GEE-3: Weight Option 1 (Optimal Weight)

Parameter True Method Mean Variance SE2 MSE

rGEE3-2 4.028 .1176 .1788 .1184
GEE3-3 4.015 .0924 .1110 .0926

13 4.0 GEE3-4 4.017 .0908 .0812 .0911
GEE3-5 4.023 .0761 .0641 .0766
GEE3-6 4.020 .0740 .0627 .0745

GEE3-2 1.000 .0078 .0091 .0078
GEE3-3 1.001 .0062 .0057 .0062

d 1.0 GEE3-4 1.001 .0060 .0058 .0060
GEE3-5 .999 .0053 .0047 .0053
GEE3-6 .999 .0049 .0043 .0049

GEE3-2 1.441 .0518 .0800 .0552
GEE3-3 1.455 .0556 .0641 .0577

1.5 GEE3-4 1.451 .0542 .0495 .0567
GEE3-5 1.452 .0516 .0420 .0539
LGEE3-6 1.454 .0546 .0391 .0566

of estimating the allele frequency (i.e., stage 2 of the esti-
mation method), p, is suboptimal. However, in the simu-
lations p was the best estimated of the three genetic pa-

rameters, relative to the MLE, and it appears possible
that the founders-only method could work well, if the
other parameters, particularly d, were better estimated in
stage 1.

It has been remarked by a reviewer that the second-
stage estimate of p may suffer greatly in the case when
phenotype data are missing, since founders typically will
have fewer phenotype data available. In order to see

whether the two-stage method for estimating p was

more sensitive to missing data than the MLE, an addi-
tional analysis, on just one of the simulated eight-mem-
ber data sets, was performed. We randomly replaced
50% of the phenotype data for all the members of the
data set with missing values and then, with all the pa-

rameters except the allele frequency fixed at their true

values, we estimated p in two ways: first, using SAGE
while using the full pedigrees; and second, using the data
from the founders only (the second stage). We found
that the lengths of likelihood-based 95% confidence in-

Table 6

Summary of Simulation Analyzing Four-Member Nuclear Family Structure Pedigree Data
Using GEE-3: Weight Option 2 (Sample Moments Based on Multivariate Normal Assumption)

Parameter True Method Mean Variance SE2 MSE

r(GEE3-2 4.038 .1129 .2077 .1143
GEE3-3 4.024 .0974 .1283 .0980

4 GEE3-4 4.023 .0951 .1009 .0957
GEE3-5 4.025 .0863 .0847 .0869

I GEE3-6 4.018 .0806 .0815 .0810

GEE3-2 .998 .0081 .0103 .0081
GEE3-3 .998 .0067 .0069 .0067

d 1 GEE3-4 .998 .0066 .0066 .0066
GEE3-5 .998 .0065 .0063 .0065
GEE3-6 .999 .0056 .0059 .0056

r GEE3-2 1.436 .0637 .0973 .0678
GEE3-3 1.461 .0914 .0833 .0930

&2 1.5 GEE3-4 1.456 .0912 .0793 .0931
GEE3-5 1.455 .0784 .0711 .0804
GEE3-6 1.460 .0787 .0654 .0830

222



Lee and Stram: Segregation Analysis Using GEE

Table 7

Summary of Simulation Analyzing Four-Member Nuclear Family Structure Pedigree Data
Using GEE-3: Weight Option 3 (Empirical Covariance of the Working Vector)

Parameter True Method Mean Variance SE2 MSE

GEE3-2 3.896 .1272 .1676 .1379
GEE3-3 3.914 .1111 .1061 .1185

13 4 GEE3-4 3.944 .1131 .0775 .1162
GEE3-5 3.961 .0978 .0648 .0994

I GEE3-6 3.945 .0934 .0610 .0965

GEE3-2 1.011 .0090 .0093 .0090
GEE3-3 1.000 .0072 .0058 .0072

d 1 GEE3-4 .990 .0072 .0051 .0073
GEE3-5 .980 .0068 .0047 .0072
GEE3-6 .982 .0060 .0043 .0063

GEE3-2 1.445 .0539 .0729 .0568
GEE3-3 1.444 .0568 .0591 .0599

a72 1.5 GEE3-4 1.405 .0582 .0446 .0672
GEE3-5 1.383 .0539 .0385 .0675

I GEE3-6 1.375 .0537 .0348 .0692

tervals for p were actually quite similar (0.074 and
0.0755 for SAGE and the founders-only method, respec-

tively), using the two methods on this 50% missing data
set. This analysis again appears to indicate that the effi-
ciency problems of the GEE-3-based two-stage ap-

proach relate to poor estimation of the parameters esti-
mated in stage 1 rather than inferior estimation of the
allele frequency using only the founders data.

Further evaluation of these methods may be useful
in the future. For example, the use of fourth, or even

higher sample moments, could be considered and
probably are necessary for good estimation of the
dominance parameter d. In the present study we have
taken a brute-force approach toward determining
which of the third sample moments appear to provide
information regarding the genetic parameters. In the
construction of estimating equations for more com-

plex pedigrees we need to better understand which
higher-order sample moments are the most informa-
tive about the genetic parameters. In table 3 it appears
that very little gain is made in efficiency of the estima-
tion procedure once the first three third moments
given in table 1 are included in the first stage: the
generality of this observation, however, is as yet un-

known. A GEE-based approach that used only a few
very informative higher-sample moments might be an

attractive addition, rather than alternative, to MLE
methods, particularly since with such methods it
would be possible to compare the moment estimates
from the model with those observed in the sample
data, thereby providing measures of the fit of the
model as a whole.

Tables 5-7 address the issue of which of two pro-

posed weight matrices is superior in terms of their per-
formance relative to the supposed "gold standard." The
results here indicate that, with the possible exception of
a', the weight matrix based on the higher moments of
the multivariate normal distribution produced more ac-
curate estimated variances of the parameter estimates
than did the use of the empirical score covariances.
Again, the generality of this observation requires further
investigation.
Many segregation analyses involve data collection de-

signs that may differ from the simple random sampling
of families discussed in this paper. Families may be in-
cluded in the sample on the basis of the phenotype of
one or more members of the family or on the basis of
the occurrence of a disease potentially related to the
phenotype being examined. For example, studies of the
genetics of blood pressure may ascertain only families
for whom high blood pressure, or a disease related to
blood pressure level, is detected in at least one pedigree
member. Understanding the effects of these and other
sampling schemes on the expectation of sample mo-
ments of the phenotype is key to extending GEE-based
procedures for segregation analysis outside the random-
sampling framework.
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