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Summary Introduction

In complex disease studies, it is crucial to perform
multipoint linkage analysis with many markers and to
use robust nonparametric methods that take account of
all pedigree information. Currently available methods
fall short in both regards. In this paper, we describe how
to extract complete multipoint inheritance information
from general pedigrees of moderate size. This informa-
tion is captured in the multipoint inheritance distribu-
tion, which provides a framework for a unified approach
to both parametric and nonparametric methods of link-
age analysis. Specifically, the approach includes the fol-
lowing: (1) Rapid exact computation of multipoint LOD
scores involving dozens of highly polymorphic markers,
even in the presence of loops and missing data. (2) Non-
parametric linkage (NPL) analysis, a powerful new ap-
proach to pedigree analysis. We show that NPL is robust
to uncertainty about mode of inheritance, is much more
powerful than commonly used nonparametric methods,
and loses little power relative to parametric linkage anal-
ysis. NPL thus appears to be the method of choice for
pedigree studies of complex traits. (3) Information-con-
tent mapping, which measures the fraction of the total
inheritance information extracted by the available
marker data and points out the regions in which typing
additional markers is most useful. (4) Maximum-likeli-
hood reconstruction of many-marker haplotypes, even
in pedigrees with missing data. We have implemented
NPL analysis, LOD-score computation, information-
content mapping, and haplotype reconstruction in a new
computer package, GENEHUNTER. The package
allows efficient multipoint analysis of pedigree data to be
performed rapidly in a single user-friendly environment.
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Linkage analysis aims to extract all available inheritance
information from pedigrees and to test for coinheritance
of chromosomal regions with a trait. In principle, one
can use either parametric methods, which involve testing
whether the inheritance pattern fits a specific model for
a trait-causing gene, or nonparametric methods, which
involve testing whether the inheritance pattern deviates
from expectation under independent assortment.
Although easily stated, this goal has proved hard to

implement in practice. A major obstacle has been the
computational difficulty of making inferences based on
imperfect information, arising from incomplete struc-
ture of human pedigrees and incomplete informativeness
of genetic markers. Parametric and nonparametric meth-
ods have generally adopted rather different solutions,
neither of which is wholly satisfactory:

1. Parametric analysis. The LOD-score method is the
most widely used approach to parametric linkage
analysis (Morton 1955); its theoretical foundations
are well understood, and computer programs to
carry out LOD-score calculations are available (Ott
1991; Terwilliger and Ott 1994). The major diffi-
culty is computational-extracting the full linkage
information in a pedigree requires the use of a dense
genetic linkage map, but such multipoint analysis is
infeasible for more than a handful of loci because of
the inherent constraints of the Elston-Stewart algo-
rithm (Elston and Stewart 1971). The problem has
been circumvented in the case of specific pedigree
structures, through the use of alternative algorithms
(Lathrop et al. 1986; Lander and Green 1987; Krug-
lyak et al. 1995), and recent improvements to the
Elston-Stewart algorithm promise to make multi-
point analysis with a limited number of loci more
practical (O'Connell and Weeks 1995). Nonetheless,
complete multipoint analysis remains a bottleneck
for general pedigrees-even those of moderate size.

2. Nonparametric analysis. Because parametric linkage
analysis can be highly sensitive to misspecification
of the linkage model (Clerget-Darpoux et al. 1986),
nonparametric analysis is a key tool for all but the
simplest of traits. Nonparametric analysis has been
performed primarily by one of two methods. The
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first approach is to break pedigrees into nuclear fami-
lies and apply sib-pair analysis; this is inefficient be-
cause it wastes a great deal of inheritance informa-
tion contained in pedigree structure. To partly utilize
pedigree information, Weeks and Lange (1988,
1992) developed the affected-pedigree-member
method (APM). APM is not a true linkage method.
It sidesteps the thorny issue of tracing the inheritance
pattern in a pedigree by focusing on whether affected
relatives happen to show the same alleles at a locus
(i.e., identity/identical by state [IBS]), regardless of
whether the allele is actually inherited from a com-
mon ancestor (i.e., identity/identical by descent
[IBD]). The extent of IBS sharing among all pairs of
affected members of the pedigree is compared with
Mendelian expectation under the hypothesis of no
linkage. The APM approach has several drawbacks:
(i) It focuses only on IBS information and ignores
genotype information for additional members of the
pedigree, even when this information can be used to
resolve whether shared alleles are actually IBD. (ii)
It involves comparisons only among pairs of individ-
uals, which can be less powerful than tests based on
larger sets of affected individuals (Whittemore and
Halpern 1994a; also, see below). (iii) It lacks a true
multipoint formulation. Multilocus APM simply
adds together statistics from several marker loci
(Weeks and Lange 1992), rather than extracting link-
age information about any given point. It thus tests
for linkage to an extended chromosomal region
rather than to a point, and therefore it cannot be
used to localize a particular locus relative to a map
markers. By failing to extract the full inheritance in-
formation, APM is potentially prone to false-positive
and false-negative results.

To avoid these inherent problems of IBS-based meth-
ods, Curtis and Sham (1994) have recently proposed an
approach, called extended relative pair analysis (ERPA),
that uses the risk-calculation facility of the LINKAGE
package (Lathrop et al. 1984) to compute IBD-sharing
probabilities for all pairs of affected individuals in a
pedigree. ERPA is thus a true linkage approach to non-
parametric analysis. It is limited, however, in several
key respects: the comparisons are inherently confined to
relative pairs; the statistical test for linkage is ad hoc;
and the method cannot handle large numbers of loci,
because of the basic algorithm used in the LINKAGE
package. Other approaches to nonparametric analysis
have also been described (e.g., by Curtis and Sham
1995).
The purpose of this paper is to describe a unified

approach to both parametric analysis and nonparamet-
ric analysis. The key is to separate two issues: (1) ex-
tracting information about the inheritance pattern in a

pedigree (which depends only on the genetic markers)
and (2) defining a statistic to assess linkage for a given
inheritance pattern (which depends only on the nature
of the trait).

This approach generalizes our recent methods for
complete multipoint sib-pair analysis (Kruglyak and
Lander 1995) to the situation of arbitrary pedigrees.
The generalization required the development of a new
linkage algorithm for arbitrary pedigrees, as well as the
definition of new statistics for performing nonparamet-
ric analysis.
The paper is organized in four parts. First, we discuss

how to extract all available inheritance information
from a pedigree. Specifically, we present a complete
multipoint algorithm for determining the probability
distribution over possible inheritance patterns at each
point in the genome. Second, we apply these concepts
to define a unified multipoint framework for both para-
metric and nonparametric analysis. In the former case,
the approach provides a rapid multipoint linkage algo-
rithm for traditional LOD-score calculations. In the lat-
ter case, it provides a powerful new approach to pedi-
gree analysis, which we refer to as nonparametric
linkage (NPL) analysis. Third, we evaluate the power of
NPL analysis in applications to both simulated and ac-
tual data. In all cases examined, NPL analysis is consid-
erably more powerful than APM. Finally, we show how
the framework presented here also allows reconstruction
of haplotypes in pedigrees.
We have implemented these methods in a computer

program, GENEHUNTER, for both parametric and
nonparametric analysis. With current workstations, the
program can rapidly analyze moderately sized pedigrees
of the sort used in genetic studies of complex traits.

Definitions

Given a pedigree, we define nonfounders to be those
individuals whose parents are in the pedigree. Without
loss of generality, we will assume that pedigrees are de-
fined to include both parents of any individual who has
a sib, half-sib, or parent in the pedigree. (If such parents
are unavailable for study, they are simply included in
the pedigree with unknown phenotypic and genotypic
status). Individuals whose parents are not in the pedigree
are designated as founders. Throughout, n will denote
the number of nonfounders, and f the number of found-
ers, in a pedigree. Founders will be assumed to be unre-
lated; that is, they are assumed to carry 2f alleles that
are distinct by descent (although some may be IBS).

Representing and Computing Inheritance Information

The Inheritance Vector
Linkage analysis can be divided into two steps: (i)

inferring information about the inheritance pattern of a
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pedigree and (ii) deciding whether the inheritance infor-
mation indicates the presence of a trait-causing gene.

Ideally, one would like to know the precise inheritance
pattern at every locus in the genome. The inheritance
pattern at each point x is completely described by a

binary inheritance vector v(x) = (plml Pp2,m2,
... ,pn,mn), whose coordinates describe the outcome of
the paternal and maternal meioses giving rise to the n

nonfounders in the pedigree (Lander and Green 1987).
Specifically, pi = 0 or 1, according to whether the grand-
paternal or grandmaternal allele was transmitted in the
paternal meiosis giving rise to the ith nonfounder; mi
carries the same information for the corresponding ma-

ternal meiosis. Thus, the inheritance vector completely
specifies which of the 2f distinct founder alleles are in-
herited by each nonfounder. The notion of the inheri-
tance vector is illustrated in figure 1A. The set of all 22n
possible inheritance vectors will be denoted V. Similar
representations of inheritance have been proposed in
the context of Monte Carlo linkage analysis (Sobel and
Lange 1993; Thompson 1994), as well as in other appli-
cations (Whittemore and Halpern 1994a, 1994b; Guo
1995).

The Inheritance Distribution
In practice, it is not feasible to determine the true

inheritance vector at every point in the genome, since
this would require genotyping all pedigree members
with an infinitely dense map of fully informative mark-
ers. Because key pedigree members are frequently un-

available and genetic markers have limited heterozygos-
ity, genotype data will provide only partial information
about inheritance.

Partial information extracted from a pedigree can be
represented by a probability distribution over the possi-
ble inheritance vectors at each locus in the genome-

that is, P(v(x) = w) for all inheritance vectors wE V. In
the absence of any genotype information, all inheritance
vectors are equally likely according to Mendel's first
law, and the probability distribution is uniform (abbre-
viated as Puniform). As genotype information is added,
the probability distribution is concentrated on certain
inheritance vectors. The probability distribution over

possible inheritance vectors will be referred to as the
inheritance distribution; the notion is illustrated in figure
1B and C.

Calculating the Inheritance Distribution by Use of
Hidden Markov Models (HMMs)
To extract the full information from a data set, one

must calculate the inheritance distribution conditional
on the genotypes at all marker loci (abbreviated
Pcomplete). Lander and Green (1987) described how, in
principle, an HMM can be used to solve this problem.
In brief, the approach considers the inheritance pattern
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Figure 1 Illustration of the inheritance vector and its distribu-
tion, for a simple pedigree. A, Pedigree shown with individuals labeled
"1" through "5." The distinct-by-descent founder alleles are labeled
"xl" through "x6"; they are assumed to be phase known, with the
paternally derived allele listed first. The four meiotic events whose
outcomes determine inheritance in the pedigree are indicated by
arrows; the labels correspond to the coordinates in the inheritance
vector. The inheritance outcome shown is specified by inheritance
vector (0,0,0,0)-that is, the paternally derived allele is transmitted
in every meiosis. B, Same pedigree, now shown with actual genotypes
at a marker with three alleles, A, B, and C. Only the outcome of
meiosis 3 is unambiguously determined by the genotype data-the
paternally derived allele is transmitted, fixing the third bit in the inheri-
tance vector at 0. C, Inheritance distribution for the 16 possible inheri-
tance vectors. "prior" denotes distribution before any genotyping has
been performed; "posterior" denotes distribution based on genotypes
in panel B; and "true" denotes distribution based on fully informative,
phase-known genotypes as in panel A.

across the genome as a Markov process (with recombi-
nation causing transitions among states) that is ob-
served, imperfectly, only at marker loci. One uses the
imperfect observations at each marker (more precisely,
the probability distribution over inheritance vectors at
each marker locus, conditional only on the data for the
locus itself [abbreviated as Pmarker]), to reconstruct the
probability distribution at any point, conditional on the
entire data set, according to the standard forward-back-
ward conditioning approach employed in HMMs (Rabi-
ner 1989). In the basic Lander-Green algorithm, the time
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required for theHMM reconstruction step with m mark-
ers is O(m 2"). Because this scales linearly with the
number of loci but exponentially with the number of
nonfounders, the approach is best suited to complete
multipoint analyses in pedigrees of moderate size. In
contrast, the Elston-Stewart algorithm scales exponen-
tially with loci but linearly with nonfounders and thus
is best suited for studying one or a few markers in large
pedigrees.

First Speedup
Kruglyak et al. (1995) recently showed how to de-

crease the time required for the HMM reconstruction
step from O(m * 2") to O(m * n22n), thereby effectively
doubling the pedigree size to which the HMM approach
can be applied. With this speedup, the approach has
been implemented in special cases, to allow complete
multipoint analysis for homozygosity mapping, linkage
analysis in nuclear families, and sib-pair analysis (Krug-
lyak et al. 1995; Kruglyak and Lander 1995). To apply
the approach to general pedigrees, it is necessary to have
an algorithm for calculating the initial distributions used
in the HMM, Pmarker for pedigrees of arbitrary structure.
We have now devised such an algorithm, which is de-
scribed in appendix A.

Second Speedup
We have devised a further substantial acceleration of

the HMM, by taking advantage of a certain degeneracy
among the inheritance vectors. Since a pedigree contains
no information about founder phase, inheritance vectors
that differ only by phase changes in the founders are
completely equivalent and must therefore have equal
probabilities. In a pedigree with f founders, the inheri-
tance vectors can thus be organized into equivalence
classes consisting of 2f equivalent members. The HMM
algorithm can be modified to work with just a single
representative from each equivalence class, as described
in appendix B. This reduces both the time and space
requirements of the calculation by a factor of 2f, further
increasing the size of pedigrees that may be analyzed.
The running time for analysis of m markers is thus
O(m - n22-f )

Computer Implementation
We have implemented theHMM approach with these

two speedups in a new computer package, GENE-
HUNTER. On current workstations, GENEHUNTER
can comfortably handle pedigrees with 2n - f - 16,
or, typically, approximately a dozen nonfounders. Some
examples of pedigrees that can be readily analyzed are
given in figure 2.
The same methods also can be used to estimate the

number of recombination events between two markers.
GENEHUNTER includes an option to compute this

A

B

C

Figure 2 Examples of pedigrees that can be analyzed by using
GENEHUNTER. A, Simple three-generation pedigree segregating a
dominant disorder. Individuals in the last two generations are avail-
able for study. B, Complex inbred pedigree that occurred in the study
of Werner syndrome (Thompson and Wijsman 1994). Only the af-
fected individual in the last generation is available for study. C, Pedi-
gree with three affected fourth cousins. Only the affected individuals
in the last generation are available for study.

number for pairs of consecutive markers, which can be
useful for detecting genotyping errors that cause map
inflation.

Information-Content Mapping
In studying a pedigree, it is useful to know how much

of the total inheritance information has been extracted
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at each point in the genome, given the available genotype
data. We introduced a notion of "information-content
mapping" in our previous work on sib-pair analysis
(Kruglyak and Lander 1995). Information content pro-
vides a measure of how closely a study approaches the
goal of completely determining the inheritance outcome,
and it points out the regions where typing additional
markers is most useful. Here, we modify our previous
approach and extend it to arbitrary pedigrees.
The classical information-theoretic measure of resid-

ual uncertainty in a probability distribution is its en-
tropy, defined by E = -IPilog2Pi, where Pi is the proba-
bility of the ith outcome and where log2 is used in order
for the entropy to be measured in bits (Shannon 1948).
The entropy of the probability distribution over inheri-
tance vectors thus naturally reflects information content.

In the absence of genotype data, the probability distri-
bution is uniform over all 22n-f equivalence classes of
inheritance vectors. The entropy of the distribution is
easily seen to be E = 2n - f bits. This result makes
intuitive sense, since we are completely uncertain about
the outcome of the 2n - fmeioses for which information
can be obtained. If the inheritance vector is known with
certainty (e.g., at a fully informative marker), the proba-
bility distribution is completely concentrated on a single
outcome. The entropy is thus E = 0, which again makes
intuitive sense.
The information content of the inheritance pattern at

point x will be defined by

IE(X) = 1 - E(x)/Eo, (1)

where E(x) is the entropy of the multipoint inheritance
distribution at x and where Eo = 2n - f bits is the
entropy in the absence of genotype data. Information
content IE(X) = 1 indicates perfect informativeness at x,
whereas information content IE(X) = 0 indicates total
uncertainty about inheritance in the pedigree at x. Since
entropy is an additive measure, it can be summed over
all pedigrees in the data set. Equation (1) is then used
with total entropy to obtain the overall information con-
tent of a study.

IE is a general measure of information content. It does
not depend on any particular test for linkage and has
the desirable property that it always lies between 0 and
1. (This contrasts with a somewhat different measure of
information content, which we discussed in previous
work on sib-pair analysis [Kruglyak and Lander 1995].)
An example of information content for different map
densities is shown in figure 3.

Unified Linkage Analysis

We now define both parametric and nonparametric
analysis from a unified perspective, which is based on

c
u

0(a

Chromosome position (cM)

Figure 3 Information-content mapping for various marker den-
sities. Genotypes for markers spaced every 2 cM on a 100-cM map,
with typical microsatellite informativeness levels (heterogeneity .75),
were simulated for 10 sibships having four sibs each, with missing
parents. The five curves show the information content with markers
genotyped at SO-cM, 25-cM, 12-cM, 6-cM, and 2-cM average spacing
(corresponding, respectively, to 3, 5, 9, 17, and 51 markers genotyped
across the map). The average information content increases from
-40% to 54%, 63%, 72%, and 85%, respectively.

the notion of inheritance vectors. In the ideal situation-
the precise inheritance vector v(x) at each point x is
known with certainty-linkage analysis simply involves
quantifying the extent to which the inheritance vector
indicates the presence of a disease gene. This can be done
by specifying a scoring function S(vA)) that depends on
the inheritance vector v and the observed phenotypes 1
in the pedigree.
To extend the analysis to the more realistic situation

in which one has only a probability distribution over
v(x), one can generalize the scoring function by taking
its expected value over the inheritance distribution:

(2)S(xA) = I S(w,$)P[v(x) = w].
wEV

Given the probability distribution over inheritance vec-
tors at every point x, it is then straightforward to calcu-
late S throughout the genome. Specifically, one could
calculate once and store the 22n-f values of S(vA). For
each point x, one could then compute the linear combi-
nation in equation (2) in time 0(22n-f ). We now con-
sider various choices of scoring functions S that corre-
spond to parametric linkage analysis and NPL analysis.

Parametric Linkage Analysis

Scoring Function
In parametric linkage analysis, one assumes a model

describing the probability of phenotype given genotype
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at the disease locus and calculates the likelihood ratio
under the hypothesis that a disease gene is at x, versus
the hypothesis that it is unlinked to x. In the special
case when the inheritance vector is known, the scoring
function S is simply the likelihood ratio. It is given by

LR(v) = P(( I v)
E P((F W)Puniform(W)

wE- V

P((D v) is simply the likelihood of observed phenotypes
(D, conditioned on the particular inheritance vector v; it
depends only on the penetrance values and allele fre-
quencies at the disease locus. For each v, one can effi-
ciently compute P((D v) by a simple adaptation of stan-
dard peeling methods for pedigrees without loops
(Elston and Stewart 1971; Lange and Elston 1975; Can-
nings et al. 1978; Whittemore and Halpern 1994b) and
by a combination of peeling, loop breaking, and enumer-
ation of founder genotypes for pedigrees with loops (for
details, see appendix C). Calculating the likelihood for
each of the 22n-f equivalence classes of inheritance vec-
tors is rapid for moderate-sized pedigrees, both with and
without loops.

In the general case, we take the expectation of the
scoring function over the inheritance distribution, as in
equation (2):

LR(x) = A LR(w)P(v(x) = w)
we V

I P(4) W)Pcomplete(W)
= wEV

I P(F W)Puniform(W)
wEV

This expression is easily seen to be equivalent to the
traditional definition of the likelihood ratio-the nu-
merator is proportional to the multipoint likelihood
when the disease gene is at x, whereas the denominator
is proportional to the unlinked likelihood. According to
long-standing tradition, one reports the LOD score,
loglo(LR).

Because traditional LOD-score analysis can be ex-
pressed in the unified framework above, the fast HMM
approach provides a rapid algorithm for performing
complete multipoint linkage analysis in moderate-sized
pedigrees. The LOD scores obtained by this method are
exact-no approximations are involved. The only dif-
ference with conventional algorithms is the speed of
computation when many markers are considered simul-
taneously.

Implementation
We have implemented parametric linkage analysis

within GENEHUNTER. The program can compute
LOD scores for arbitrary pedigrees under particular

models of inheritance, allowing the user to specify allele
frequencies at the disease locus and penetrances for lia-
bility classes (including age- and sex-dependent pene-
trances). The program also allows the user to test for
linkage under genetic heterogeneity by using an admix-
ture model (Ott 1991; Terwilliger and Ott 1994) to esti-
mate the proportion of linked families a. Alternatively,
the user can specify the admixture parameter a.
To illustrate its performance, GENEHUNTER was

applied to simulated data for the pedigrees shown in
figure 2. For each pedigree, we simulated genotype data
for a genetic map of 20 markers under the hypothesis
of a disease-causing gene located in the middle of the
map. We then calculated complete multipoint LOD
scores at each marker and at four points within each
interval between markers, that is, at 96 distinct map
locations (fig. 4). On a DEC Alpha workstation, the
computation times for these 96 21-point LOD scores
(disease locus plus all 20 markers) were 24 min, 82 min,
and 280 min, for pedigrees A, B. and C, respectively.
(The respective values of 2n - f are 14, 15, and 16).
For each of the three pedigrees, the maximum LOD

score computed by using complete multipoint analysis
approaches the theoretical maximum LOD score that
would be obtained with an infinitely polymorphic
marker located at a recombination fraction of zero from
the disease gene. In particular, for pedigree C in figure
2, the three isolated fourth cousins have a probability of
( 1/2)13 of sharing an allele IBD, resulting in a theoretical
maximum LOD score of 3.91. The multipoint LOD
score nearly achieves this maximum, with a LOD of
3.84 (fig. 4C), indicating that it has extracted essentially
all inheritance information. In contrast, the maximum
LOD score attainable with a single marker is only 1.87,
and the maximum LOD score with two flanking markers
is 1.98. In this case, multipoint analysis increases the
LOD score from moderately interesting to significant,
providing almost 100-fold-higher odds in favor of link-
age than does two-point analysis.
To further explore the value of multipoint analysis,

we considered the simpler case of a pedigree with two
affected fourth cousins and all other pedigree members
unavailable for study. We once again simulated a 20-
marker map under the hypothesis of a linked rare domi-
nant gene. The IBD-sharing probability for two fourth
cousins is 1/256, yielding a theoretical maximum LOD
score of 2.41. In figure 5, we plot the maximum LOD
score achieved by analyzing k = 1, . . . ,20 consecutive
markers simultaneously. Complete 20-marker analysis
yields a LOD score of 2.2 (91% of theoretical maxi-
mum). In contrast, the highest two-point LOD score
is only 0.83 (34% of theoretical maximum), and even
simultaneous six-marker analysis yields, at most, a LOD
score of 1.74 (72% of theoretical maximum). These re-
sults underscore the value that multipoint analysis with
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Figure 4 Multipoint LOD-score plots for the pedigrees shown in figure 2. Genotypes for 20 markers were simulated under the assumption
of a disease gene at the location indicated by an arrow. A total of 96 21-point LOD scores were computed, with the disease locus tested at
each marker and at four evenly spaced locations in each interval between markers. Marker positions are indicated by tick marks on the
horizontal axis. A, Pedigree of figure 2A, with a rare dominant gene (frequency 10-4). B, Pedigree of figure 2B, with a rare recessive gene
(frequency 10-4). C, Pedigree of figure 2C, with a very rare dominant gene (frequency 10-6).

many markers has for extracting the full inheritance
information. Such multipoint analysis is clearly desir-
able, since it requires only 40 s on a SUN SPARC work-
station running GENEHUNTER.
To compare the performance of GENEHUNTER with

that of other linkage packages, we analyzed the pedigree
with two affected fourth cousins, using FASTLINK
(Cottingham et al. 1993) and VITESSE (O'Connell and
Weeks 1995), both running on a SUN SPARC worksta-
tion. FASTLINK required 32 min to compute LOD
scores when using overlapping sets of two markers (28
three-point calculations), with a maximum LOD score
of 0.98. Four-point calculations failed to complete after
-1-00 h. VITESSE required 85 s to compute LOD scores
when using two markers simultaneously, 30 min to com-
pute LOD scores when using three markers simultane-
ously (54 four-point calculations; maximum LOD score
of 1.28), and 19 h 14 min to compute lod scores when
using four markers simultaneously (68 five-point calcu-
lations; maximum LOD score of 1.43). Six-point calcu-
lations failed to complete after '100 h. These other
programs thus can perform multipoint analysis with a
handful of markers, but not the complete multipoint
calculations necessary to extract all available inheritance
information. On the other hand, these programs are able
to handle very large pedigrees that are beyond the com-
putational limitations of GENEHUNTER.
GENEHUNTER's speed is independent of the number

of alleles per marker (thereby allowing highly polymor-
phic markers to be used without recoding) and is essen-
tially independent of the amount of missing information
in the pedigree. The program has been tested extensively

by comparing the results with those produced by LINK-
AGE (Lathrop et al. 1984) and FASTLINK (Cottingham
et al. 1993), for a variety of family structures and modes
of inheritance (in analyses using a small number of
markers). In all case examined, the three programs pro-
duced identical answers.

NPL Analysis

Scoring Functions
We begin by considering the special case in which the

inheritance vector is known with certainty. The inheri-
tance vector fully determines which of the 2f distinct
founder alleles was inherited by each person and thus
completely specifies IBD sharing in the pedigree. The
only issue is to define a suitable scoring function to
measure whether affected individuals share alleles IBD
more often than expected under random segregation.
One simple approach would be to assign a score of 1 if
all affected individuals in a pedigree share an allele IBD
and to assign a score of 0 otherwise (Thomas et al.
1994). However, this statistic is likely not to be robust
in the presence of phenocopies and common disease al-
leles. We consider below two useful scoring functions,
Spairs and Sall, previously discussed by Whittemore and
Halpern (1994a); other scoring functions can be defined.

1. IBD sharing in pairs.-One possible approach is to
count pairwise allele sharing among affected relatives.
Given the inheritance vector v, Spairs(v) is defined to be
the number of pairs of alleles from distinct affected pedi-
gree members that are IBD. The traditional APM statis-
tic (Weeks and Lange 1988) also counts pairwise allele
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Figure 5 Maximum LOD score achieved in a pedigree with two
affected fourth cousins, plotted as a function of k, the number of
markers analyzed simultaneously. Genotypes for 20 markers were
simulated by assuming the presence of a very rare dominant disease
gene (frequency 10-6) in the middle of an 18-cM map, as in figure
4C. LOD scores were computed with the disease locus tested at the
markers and at four points within each interval between markers;
genotype data from overlapping sets of k consecutive markers were
used. Black dots show results for multipoint analysis with sets of
1,2,3,. . . ,11, and 20 markers; and the dotted line shows the theoreti-
cal maximum LOD score of 2.41 for this pedigree. The maximum
LOD score of 2.2, achieved with 20 markers, is the highest possible
with this marker density and polymorphism; doubling the marker
density and performing multipoint analysis with 40 markers raises the
maximum LOD score to 2.4 (data not shown).

sharing, but it is based on sharing IBS rather than on
sharing IBD; the two statistics will coincide only at
markers for which IBS unambiguously determines IBD.

2. IBD sharing in larger sets.-One can often increase
statistical power by considering larger sets of affected
relatives, rather than just pairs. For example, it is more
impressive to find that five affected relatives share the
same allele IBD than to find that each pair of them shares
some allele IBD. Whittemore and Halpern (1994a) pro-
posed an interesting statistic to capture the allele sharing
associated with a given inheritance vector v. Let a denote
the number of affected individuals in the pedigree, let h
be a collection of alleles obtained by choosing one allele
from each of these affected individuals, and let bi(h)
denote the number of times that the ith founder allele
appears in h (for i = 1, . .. ,2f). The score Sall is defined
as

Sali(V) = 2 a L[ bi(h)!1
h i= 1

where the sum is taken over the 2a possible ways to
choose h. In effect, the score is the average number of

permutations that preserve a collection obtained by
choosing one allele from each affected person. It gives
sharply increasing weight as the number of affected indi-
viduals sharing a particular allele increases.

For either approach, we define a normalized score

Z(v) = [S(v) - p1/a, (3)

where J and a are the mean and SD of S under Puniform
the uniform distribution over the possible inheritance
vectors. (These quantities can be calculated by enumera-
tion over all vectors.) Under the null hypothesis of no
linkage (i.e., Puniform), the normalized score Z has mean
0 and variance 1.
To combine scores among m pedigrees, one can take

a linear combination

m

Z= xYiZi,
i=l

(4)

where m is the number of pedigrees, Zi denotes the nor-
malized score for the ith pedigree, and the y, are
weighting factors. The weighting factors should be cho-
sen so that i = 1, so that Z has mean 0 and variance
1 under the null hypothesis of no linkage. We will use
Yj = i1Fm in the applications below; this choice appears
to provide a good compromise between small and large
pedigrees. It may be possible to increase power by select-
ing y, according to the nature of the pedigrees, but we
will not explore this issue here, other than to note that
the optimal choice will likely depend on the (usually
unknown) genetic architecture of particular diseases.
We will refer to Z as the NPL score for the collection

of pedigrees. In some cases, we will speak of NPLpairs
and NPLall scores, to indicate the scoring function under
consideration.

Statistical Significance
Suppose that analysis of pedigrees yields an NPL sta-

tistic of Zobs. What is the significance level of this obser-
vation? There are two simple approaches:

1. Exact distribution. It is straightforward to compute
the exact probability distribution of the overall score
Z under the null hypothesis of no linkage. Specifi-
cally, one can calculate the distribution for each pedi-
gree by enumerating all possible inheritance vectors;
the distribution for the collection of pedigrees is then
obtained by convolving these distributions. One can
then simply look up the exact value, P(Z ' Zobs).

2. Normal approximation. Under the null hypothesis
of no linkage, the score Z will tend toward a standard
normal variable as one studies many similar pedi-
grees. (This follows from the central limit theorem,
since Z is an appropriately normalized sum of inde-
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pendent random variables.) The significance level of
an observation Zobs can then be approximated by
consulting a table of tail probabilities for the stan-
dard normal. Although less precise than the exact
distribution, the normal approximation is useful in
some settings.

Imperfect Data
We have so far considered the situation in which the

inheritance vector is known with certainty. In fact, it is
straightforward to extend Z to the general case, by tak-
ing its expected value over the inheritance distribution,
as in equation (2): Z(x,F) = 4wev Z(wA) Prob[v(x)
= w], where the probability distribution over inheri-
tance vectors here refers to the joint distribution over
all pedigrees. To be precise, for a single pedigree we
replace S(v) by SKin equation (3); the normalized scores
for individual pedigrees are then combined into an over-
all score as in equation (4).
The only complication is in evaluating the statistical

significance of Z. Because Z is the expectation over the
observed inheritance distribution, its statistical proper-
ties depend on the distribution of possible inheritance
distributions (given the markers and pedigree structure).
This distribution could be explicitly studied by Monte
Carlo sampling from all possible realizations of the
marker data. However, it is not hard to show that Z
has the following properties under the null hypothesis
of no linkage (see appendix D):

1.

2.

mean(Z) = mean(Z) = 0;

variance(Z) - variance(Z) = 1;

3. Z is asymptotically normally distributed as one stud-
ies a large number of similar pedigrees.
Moreover, Z approaches Z as information content ap-

proaches 100%, under both the null hypothesis of no

linkage and the alternative hypothesis of linkage. Given
these properties, it seems reasonable to evaluate the sta-
tistical significance of an observation Zobs by using the
null distribution of Z expected in the case of complete
informativeness. The significance level is likely to be
conservative (in view of 1 and 2; eqq. [5] and [6]) and
becomes increasingly accurate as information content
increases. We will refer to this approach as the perfect-
data approximation.

Simulation studies (see below) show that the perfect-
data approximation is indeed conservative but that it
sacrifices relatively little power except when information
content is very low. Indeed, significance levels appear to
be within twofold of the empirical values obtained from
simulations. The approximation should thus not hamper
initial detection of interesting regions and should grow

I

II

inl

Figure 6 Pedigree structure used in the power simulations. Dis-
ease inheritance was simulated for four models: dominant, recessive,
and two intermediate models (for details on the models, see table 1).
Pedigrees were selected for analysis if they had at least three affecteds
in generation III, including at least one affected individual in each
sibship. Individuals in generation I were assumed to be unavailable
for genotyping. Genotypic data were simulated for 11 markers spaced
every 10 cM on a 100-cM map; all markers had five equally frequent
alleles (heterogeneity .8). The disease locus was assumed to lie in the
middle of the map, exactly at marker 6. A total of 100 pedigrees were
simulated for each model, and 100 sets of 5 or 10 pedigrees each
(depending on the model; see table 1) were resampled from this initial
set for power calculations.

increasingly accurate as one genotypes additional mark-
ers in these regions.

Implementation
We have implemented the calculation of both NPLpairs

and NPLall scores within GENEHUNTER. Given the
inheritance distribution at each point in the genome, the
calculation of NPL scores is rapid. The program reports
the normalized score Zi for each pedigree, the overall
statistic Z, and the significance levels for the perfect-
data approximation based on the exact approach.
Although we have focused only on Spairs and Sal, it is

straightforward to substitute other scoring functions to
include further information about sharing among af-
fected individuals or even about nonsharing between
affected individuals and unaffected individuals. Such
scoring functions can be easily incorporated into GENE-
HUNTER.

Evaluation of NPL Analysis

Power Comparisons
We compared the performance of the various linkage

methods on simulated data, assuming dominant, reces-
sive, and two intermediate models and a 10-cM genetic
map with markers having heterozygosity of 80%. The
pedigree structure used in the simulations is shown in
figure 6 (for details, see the legend to fig. 6). The pedi-
grees were analyzed by using complete multipoint para-
metric linkage analysis (under the model used to gener-
ate the data), complete multipoint NPL analysis (using
both the Spairs and Saii scoring functions), and APM anal-
ysis (Weeks and Lange 1988, 1992). The performance
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Table 1

Power Comparisons Based on Simulations

P == =

.05 .01 .001 .0001 .00001 .05 .01 .001 .0001 .00001

Power to Detect Linkage with N Pedigrees Expected No. of Pedigrees Required for
(%) Detection of Linkage

Dominant: Dominant:
NPLai1 100 99 95 92 81 NPLaii 1 1 2 3 4
NPLpairs 99 95 67 33 10 NPLpairs 2 3 5 7 9
APM 62 42 15 5 2 APM 5 8 15 22 29
LOD 100 100 100 100 100 LOD 1 1 2 2 3

Recessive: Recessive:
NPLall 100 99 96 79 66 NPLaii 1 2 3 3 4
NPLpairs 100 100 97 82 62 NPLpairs 1 2 3 4 5
APM 87 59 34 19 10 APM 2 4 6 9 11
LOD 100 100 100 100 100 LOD 1 1 2 3 3

Complex 1: Complex 1:
NPLail 64 40 17 7 4 NPLaIj 10 20 34 50 65
NPLpairs 58 25 7 1 0 NPLpairs 16 31 55 79 102
APM 40 23 10 2 1 APM 21 42 74 107 141
LOD 77 57 27 4 1 LOD 6 11 19 28 36

Complex 2: Complex 2:
NPLaii 100 99 98 92 79 NPLaii 2 3 4 6 8
NPLpairs 100 99 92 71 49 NPLpairs 2 4 6 8 11
APM 83 68 41 14 5 APM 4 8 14 20 26
LOD 99 99 97 95 87 LOD 1 2 4 5 7

NoTE.-N = S was used for the dominant and recessive models, and N = 10 was used for the two complex models. Power was defined as
the number of data sets (from 100) in which the appropriate threshold was exceeded. Model parameters were as follows (fd = disease gene
frequency; P++, P+d, and Pdd = penetrances of + +, +d, and dd genotypes, respectively): for the dominant model, fd = .01, p++
= .001, P+d = .999, and Pdd = .999; for the recessive model, fd = .05, pI+ = .001, P+d = .001, and pdd = .999; for the complex model 1, fd =
.05, P++ = .05, P+d = .4, and Pdd = .6; and, for the complex model 2, fd = .01, p++ = .01, P+d = .45, and Pdd = .75. These parameters correspond
to disease incidence of 2.1%, 0.35%, 8.5%, and 1.9%, respectively, and to phenocopy rates of 5%, 29%, 53%, and 52%, respectively. The
thresholds used for asymptotic significance levels of .05, .01, .001, and .0001, and .00001 were .59, 1.17, 2.07, 3.00, and 3.95, respectively, for
the LOD score (LOD) and 1.65, 2.33, 3.09, 3.72, and 4.27, respectively, for the normal scores (NPL and APM). LOD scores were computed by
using GENEHINTER, in order to carry out multipoint analysis with 11 markers in reasonable time. Multipoint NPL statistics and multipoint
LOD scores were computed by using all 11 markers simultaneously. As noted in the text, multilocus APM does not compute a multipoint statistic
as a function of location. Instead, a statistic testing linkage to a region is computed. Recombination between loci is not fully taken into account,
with the result that the statistic can decrease as additional flanking markers are considered, even in the presence of linkage. Therefore, we computed
single-locus APM statistics by using the marker at the true locus, as well as multilocus APM statistics including 1, 2, 3, 4, and 5 closest flanking
markers on each side, and we chose the highest statistic for each replicate when estimating power.

of the parametric LOD-score method under the correct
model was used as a benchmark, although it should be
noted that the correct model is usually unknown and
that model misspecification can lead to considerable loss
of power.
We used two criteria to assess performance: (1) the

power to detect a locus in a fixed sample of pedigrees
and (2) the expected number of pedigrees required to
detect a locus. Both measures were completed for vari-
ous nominal significance levels (p = .05, .01, .001,
.0001, and .00001). The results are summarized in table
1. Three main conclusions emerge.

First, the NPLai statistic performed better than the
NPLpairs statistic in all cases studied (except for the reces-

sive case, where the two showed comparable perfor-
mance). This accords with the intuition that testing
whether the same allele is found IBD in many affected
relatives is a more powerful strategy than considering
one relative pair at a time. The NPLa,, statistic thus ap-
pears to have the desirable property of robustness, and
it was used in all other comparisons.

Second, the NPL statistic was much more powerful
than the APM statistic, for all models examined. On
average, at a given significance level, NPL required two
to seven times fewer pedigrees for detecting linkage. The
greater power of NPL is explained by its efficient use of
all available information from simultaneous consider-
ation of both all relatives and all markers.
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Table 2

Empirical False-Positive Rates Observed in 50,000 Simulations

FALSE-POSITIVE RATE AT P =

.05 .01 .001 .0001 .00001

Sall, exact .03 .004 .0003 .00002 0
Sall, normal .04 .008 .001 .0002 .00006
Spairs, exact .03 .005 .0004 0 0
Spairs, normal .04 .008 .001 .0001 0

NoTE.-Genotypes for 50,000 data sets consisting of seven small
two- and three-generation pedigrees were simulated, under the as-
sumption that there is no linked disease-causing locus. "exact" refers
to p values obtained from the exact distribution of scores; and "nor-
mal" refers to p values obtained from the normal approximation. The
perfect-data approximation is used in both cases.

Third, the performance of NPL was roughly compara-
ble to that of the LOD-score analysis under the correct
model. NPLaI thus appears to provide a nonparametric
pedigree-analysis method that loses relatively little power
when compared with the best parametric method. This
feature is particularly significant because the NPL method
requires neither consideration of multiple models of inher-
itance (thus avoiding corrections for multiple testing) nor
advance knowledge of the correct model of inheritance
(thus avoiding problems of misspecification).

In addition to the power comparisons, we also exam-
ined the false-positive rate of NPL via simulation (table
2). The theoretical significance levels based on the perfect-
data approximation provide a somewhat conservative test
(with empirical false-positive rates roughly half those ex-
pected from theory), whereas those based on the asymp-
totic approximation of normality are closer to (and occa-
sionally exceed) the empirical values. In summary, the
procedures for evaluating statistical significance that are
outlined above appear to be reasonable.

Application to Idiopathic Generalized Epilepsy
To compare NPL and APM on real data, we reana-

lyzed pedigrees with idiopathic generalized epilepsy
(IGE) that recently were reported by Zara et al. (1995).
IGE is a neurological disorder of unknown etiology
characterized by recurring seizures. The pedigrees are
shown in figure 7. Zara et al. used APM to obtain evi-
dence for linkage of IGE to chromosome 8q24. Single-
locus APM gave the strongest evidence for linkage at
D8S256, with an APM statistic of 3.44, when allele
frequencies taken from GDB were used, and 2.90, when
allele frequencies estimated from the study sample were
used. (We quote only the APM scores obtained with the
1/V weighting function, which gave the strongest re-
sults). These APM scores correspond, respectively, to
theoretical p values of .0003 and .002 when the statistic

is assumed to follow a normal distribution and to empir-
ical p values of .002 and .006 on the basis of simulations
(Zara et al. 1995). Multilocus APM using D8S284,
D8S256, and D8S534 gave somewhat weaker evidence
for linkage. The statistics were 2.647 (GDB allele fre-
quencies) and 1.478 (sample allele frequencies), corre-
sponding to theoretical p values of .004 and .018, re-
spectively, and to empirical p values of .008 and .07,
respectively. Zara et al. considered these results as sug-
gestive of the presence of an IGE susceptibility locus on
8q24 and stressed the need for confirmation in addi-
tional family sets.
We reanalyzed these data, using the NPL statistic

Spairs, which is the appropriate IBD generalization of the
IBS APM statistic. A single-marker analysis yielded a
score of 2.26 at D8S256 (p = .02). A complete
multipoint analysis involving all three markers yielded
a lower score, 1.79 (p = .063). The results were almost
identical for both choices of allele frequencies.

Interestingly, NPL detects less evidence for linkage
than does APM. Why? It turns out that the APM analysis
gives weight to several instances of allele sharing that
are IBS but not IBD. For example, it is clear that D8S256
is completely uninformative for linkage in family 13,
since both parents are homozygous for the "10" allele
(fig. 7). NPL assigns a score of 0 to this pedigree, since
the allele sharing among affected individuals does not
reflect IBD. In contrast, APM gives substantial weight
to the observation of allele sharing at this locus. Indeed,
the APM score for this pedigree is 1.08. Similarly, af-
fected individuals 4 and 5 in family 8 share the "9"
allele at D8S256 and thus contribute to the APM score.
However, consideration of haplotypes clearly shows
that this allele is not shared IBD. NPL analysis correctly
does not detect this as sharing.

This example illustrates key advantages of NPL. Be-
cause NPL assesses IBD sharing on the basis of informa-
tion from multiple markers and all genotyped relatives,
it is less likely to be misled by chance sharing of alleles
and is less sensitive to specification of allele frequencies.
In contrast, APM has been reported to be prone to false
positives, particularly when the single-locus method is
used and correct allele frequencies are not known
(Babron et al. 1993; Weeks and Harby 1995).

Application to Schizophrenia
To further evaluate the performance of NPL, we ap-

plied it to the data reported by Straub et al. (1995) on
the 265 pedigrees in the Irish Study of High Density
Schizophrenia Families (ISHDSF). This study used both
parametric and nonparametric methods to map a poten-
tial schizophrenia-vulnerability locus to chromosome
6p24-22 and provided evidence for genetic heterogene-
ity. A total of 16 markers spanning 38.4 cM on 6p were
examined.
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Figure 7 Ten pedigrees used in the IGE study, redrawn from the report by Zara et al. (1995). Blackened symbols indicate individuals
considered as affected in the analysis. Genotypes for D8S284, D8S256, and D8S534 (from top to bottom) are shown under each individual's
symbol.

In their parametric analysis, Straub et al. computed
two-point LOD scores under the assumption of hetero-
geneity, using four genetic models each with four diag-
nostic categories. They obtained the strongest evidence
for linkage at marker D6S296, under the "Pen" model
and the broad diagnostic category (D1-D8), with a two-
point LOD score of 3.51 (p = .0002) at 0 = .004 and
proportion of linked pedigrees a = .40. To extract all
available linkage information, we extended the paramet-
ric study from single-marker analyses to a complete 16-
marker multipoint analysis under the same model and
diagnostic category (fig. 8A). The LOD curve peaked at
D6S470 (2.6 cM proximal of D6S296), with a LOD
score of 2.96 and a = .26. The multipoint results are

likely to be more accurate because they do not rely on

properties of a single marker. Indeed, the estimate of
the heterogeneity parameter a agrees more closely with
the estimate of 15%-30% that Straub et al. (1995) ob-
tained by other means. Multipoint analysis also allowed
us to compute the two-LOD support region, which ex-

tended over a 24-cM interval from D6S477 to D6S422.
Straub et al. also performed nonparametric single-

marker analysis with ESPA (extended-sib-pair analysis
[Sandkuijl 1989]), but they obtained much weaker evi-
dence of linkage. Under the broad diagnostic category,
they found values of p = .17 at D6S296 and p = .03 at
D6S285, which is 16 cM proximal of D6S296. (Under the
narrower D1-DS diagnostic category, a p value of .005

was found at D6S285.) To compare the power of NPL
analysis, we performed a complete 16-marker analysis
with the NPLaII statistic. Under the broad diagnostic cate-

gory, we obtained a maximum NPL score of 3.25 (p =

.0005) at D6S470, in the same position as that of the
multipoint LOD-score peak (fig. 8B). Secondary peaks of
-2.9 were obtained at D6S260 and D6S422.
Our results support the findings by Straub et al.

(1995) and illustrate the advantages of the new analysis
method. NPL analysis provided the same degree of evi-
dence for linkage as did the parametric LOD-score
method, without the need to examine multiple models
of inheritance. (Of course, the choice of diagnostic cate-
gories remains important.) NPL provided strong evi-
dence for linkage, whereas the other nonparametric
method, ESPA, showed, at best, weak evidence. We at-
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Figure 8 Analysis of pedigree data from the Irish schizophrenia study by Straub et al. (1995). Map position is in Kosambi centimorgams,
from D6S477. A, Multipoint LOD scores computed under the Pen model, against a fixed map of 16 markers on chromosome 6p (LOD scores

were computed at all markers and at four points within each interval between markers). B, Multipoint NPL scores (Sai, statistic). C, Information-
content mapping. The solid line shows the multipoint information content across the map when all 16 markers are used simultaneously; and
black dots show the information content of individual markers.

tribute the superior performance of NPL to its efficient
use of information from multiple markers and from all
family members. To examine this point, we calculated
the information content for single-marker analysis ver-

sus that for the complete multipoint analysis (fig. 8C).
Whereas the information content of individual markers
ranged from -50% to 70%, the information content
for the map of markers was -80% across the entire
region, indicating a substantial gain in informativeness
for the multipoint approach. In summary, the various
analyses indicate that NPL provides a useful, powerful,
and robust method for demonstrating linkage to a dis-
ease with an uncertain mode of inheritance in a heteroge-
neous data set.

Haplotype Determination

Last, we turn to the problem of inference of haplo-
types-that is, the determination of the particular
founder alleles carried on each chromosome. It is often
useful to infer haplotypes in order to identify double
crossovers that may reveal erroneous data, to visualize
single crossovers that may help confine a gene hunt,
and to seek evidence of an ancestral chromosome in
an isolated population. Some systematic methods for
haplotype reconstruction that have been suggested pre-

viously have been based on rule-based heuristics, ap-

proximate-likelihood calculations, or exact-likelihood
calculations (Weeks et al. 1995). The first two methods
are ad hoc and sometimes fail to produce the best haplo-
type reconstruction, particularly in the presence of miss-
ing data. The third method has hitherto been limited to
small numbers of markers and pedigrees with few miss-

ing data, owing to computational problems (Weeks et
al. 1995).

Inheritance vectors provide a general framework for
haplotype reconstruction. Since the inheritance vectors
completely determine the haplotype, the problem re-

duces to choosing the "optimal" inheritance vector at
the loci to be haplotyped. In the HMM literature, this
is a well-studied question known as the "hidden-state
reconstruction problem." There are two standard solu-
tions, based on somewhat different optimality criteria
(Rabiner 1989):

1. The first approach is to treat each locus separately
and select the most likely inheritance vector at each
locus (i.e., such that Pcomplete(w) is largest). This
method is clearly trivial to implement, given the in-
heritance distribution.

2. The second approach is to treat the loci together and
select the most likely set of vectors at the loci (i.e.,
the vectors having the largest joint probability when
considered as a sample path of the underlying Mar-
kov chain). This can be accomplished by using the
Viterbi algorithm (Rabiner 1989).

The first method has the advantages that it is simple
and easily reveals regions of uncertainty (in which dis-
tinct vectors have similar probabilities). The second
method has theoretical appeal because it finds the glob-
ally most likely inheritance pattern. In practice, we find
that both approaches tend to yield similar performance
and results.
We have implemented both methods for haplotype

reconstruction within GENEHUNTER. The program
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Figure 9 Example of haplotype reconstruction. Eleven markers
were spaced every 2 cM across a 20-cM region. Individuals in genera-

tion 1 were not genotyped. Crossovers are denoted by x's.

reports the most likely haplotype, marking crossovers

and highlighting double crossovers. It also indicates re-

gions of haplotype uncertainty. The methods work for
any number of markers and find the most likely haplo-
type even in pedigrees with missing data. An example is
shown in figure 9.

Discussion

Collecting and genotyping data sets of a size sufficient
for mapping complex disease genes is a formidable task,
and it is desirable to have powerful analysis tools that
efficiently make use of all available data. This requires
(a) multipoint methods that extract inheritance informa-
tion from all markers and (b) robust, nonparametric
linkage methods that take account of all pedigree mem-
bers. Currently available methods fall short in both re-

gards.
In this paper, we describe algorithms for extracting

all available inheritance information about segregation
at every point in the genome, based on genotypes at
any number of markers considered simultaneously. Such
multipoint analysis is important for several reasons: (i)

Even with relatively polymorphic microsatellite loci,
multipoint analysis of many markers is required to infer
IBD across several generations in pedigrees with sub-
stantial missing data; it can thus substantially increase
the power to detect linkage. (ii) Multipoint analysis is
more robust to misspecification of allele frequencies and
statistical fluctuations at individual markers and can

provide a confidence interval for the location of the gene.

(iii) We expect that human genetic studies will soon

employ a third-generation genetic map consisting of bi-
allelic markers, because such markers are potentially
amenable to high-throughput automation; their lower
degree of informativeness can be offset through the use

of a somewhat denser map, but this will depend crucially
on the ability to perform extensive multipoint analysis.
The available inheritance information is captured in

the multipoint inheritance distribution. This distribution
provides a natural definition of information-content
mapping, which measures the extent to which all inheri-
tance information has been extracted. In addition, the
inheritance distribution allows reliable reconstruction of
many-marker haplotypes, even in pedigrees with missing
data.
The inheritance distribution provides a unified frame-

work for both parametric and nonparametric analysis.
We have shown how to apply it to perform multipoint
parametric LOD-score calculations and to define a

multipoint nonparametric method, NPL. The frame-
work also makes it straightforward to incorporate other
linkage statistics.
We have studied the performance of NPL in applica-

tions to both simulated and actual data. NPL appears

to have many advantages over the commonly used APM
method, including much greater power to detect linkage
and less sensitivity to misspecification of allele frequen-
cies. In fact, in our comparisons, NPL was nearly as

powerful as LOD-score analysis under the correct para-

metric model-but without the need to know and spec-

ify the model in advance. Because it appears to be robust
to uncertainty about mode of inheritance and to lose
little power compared with parametric methods, NPL
would seem to be the method of choice for linkage analy-
sis of pedigree data for complex traits. Of the two NPL
methods described, we favor the NPLaii statistic and rec-

ommend using the perfect-data approximation to the
significance level, for both the exact and the normal
distributions. (The exact distribution provides a more

accurate estimate of significance.)
The methods described in this paper are computation-

ally feasible for pedigrees of moderate size (2n - f
S 16, with current workstations), although not for large
multigenerational pedigrees of the sort used to map sim-
ple dominant disorders such as Huntington disease. For-
tunately, moderate-sized pedigrees are precisely the kind
of pedigrees being used in most complex-disease studies.
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Such pedigrees are easier to collect for diseases charac-
terized by late onset, low penetrance, and diagnostic
uncertainty. They are also more likely to reflect the ge-
netic etiology of the disease in the general population
and are less likely to show intrafamilial genetic heteroge-
neity.
The methods described here have all been incorpo-

rated into a new interactive computer package, GENE-
HUNTER. The computer program is written in C and
is freely available from the authors, by anonymous ftp
(at ftp-genome.wi.mit.edu, in the directory distribution/
software/genehunter) or from our World Wide Web site
(http: / / www-genome.wi.mit.edu / ftp/distribution /
software/genehunter). We hope that GENEHUNTER
will ease the task of efficiently analyzing pedigree data
from genetic studies of complex traits.
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Appendix A
Computing the Single-Locus Inheritance Distribution
at Codominant Loci

We describe an algorithm for computing Pmarker, the in-
heritance distribution at a codominant marker locus,
conditional only on the data for that locus. We begin
by noting that it is sufficient to calculate P(Omarker v),
the probability of observing the marker data for each
inheritance vector v. One can then apply Bayes's theo-
rem, together with the fact that all inheritance vectors
are equally likely a priori, to calculate the probability
distribution over inheritance vectors.

Let X = {x1 ,x2, .. . ,X2f} be symbols corresponding to
the 2f founder alleles at the marker locus, which are
assumed to be distinct by descent. An inheritance vector
v specifies the precise founder alleles inherited by each
individual in the pedigree; let xi1(v) and xi2(v) denote the
alleles carried by the ith individual. Let A = {a1, . .. ,ak}
denote the observable allelic states; note that distinct
founder alleles may have the same state. Let ai1 and ai2
be the two observed alleles carried by the ith individual.
An assignment of the founder alleles is a mapping

function, f: X -- A. For any inheritance vector v, an

assignment f is said to be v-compatible with the observed
marker data if {f[x,1(v)],f[xi2(v)]) = ja,1 ,aiJ2 for all indi-
viduals who have been genotyped. (In other words, the
assignment of founder alleles specified by f and the trans-
mission specified by v are compatible with the observed
genotype data.) Let p(ai) denote the population fre-
quency of alleles having state ai. The probability of the
assignment f is 17i p[f(xi)], which is the chance that the
founder alleles will happen to have the states specified
in the assignment.

For a given inheritance vector v, the quantity
P(oFmarker v) is equal to the sum of the probabilities of
all v-compatible assignments. It thus suffices to find all
v-compatible assignments. This can be done through a
simple graph-theoretic process. Given v, define a graph
G(v) whose vertices are the founder alleles
{x1,x2, ... ,X2f} and whose edges are ei =[Xil(V),Xi2(V)b
where i runs over all genotyped individuals. (Pairs of
vertices in G(v) can be connected by multiple edges.)
Label edge ei with the corresponding genotype fai1 ,ai2.
The v-compatible assignments are those such that the
label on each edge is consistent with the assignment of
the two vertices of that edge. Choose an arbitrary start-
ing vertex y. If y has no edges, then the corresponding
founder allele does not appear in any genotyped individ-
ual, and it may be assigned to any ai. If y has edges, then
its assignment necessarily must lie in the intersection of
the labels on all edges from y; there are thus, at most,
two choices for y. Given the assignment of y, the assign-
ment of each neighboring vertex z is uniquely deter-
mined (since the pair of assignments of y and z must
correspond to the label on any edge connecting them).
Similarly, assignments are uniquely determined for
neighbors of neighbors of y, and so on. In other words,
the assignment of y automatically forces the assignment
of all other vertices in the same connected component.
(If this process leads to no assignment conflicts, it pro-
duces the unique v-compatible assignment for the com-
ponent, given the assignment of y. If it produces a con-
flict, there is no v-compatible assignment, given the
assignment of y.) Each connected component can be
treated separately.

For any given inheritance vector v, the running time
is easily seen to be O(n) to find all v-compatible assign-
ments of graph G(v) and thus to compute P(oFmarker v).
The overall running time is thus O(n22n-f) to compute
P(oFmarker v) for all v and to apply Bayes's theorem to
calculate Pmarker-

Appendix B

The REDUCE Algorithm for Fast HMM Computation:
Second Speedup
As in the earlier description of the algorithm (Kruglyak
et al. 1995), we identify the set of all n-bit binary vectors
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with (Z2)V, the additive vector space over the field with
two elements (i.e., vector addition is component-wise
modulo 2). Switching the phase of the ith founder corre-
sponds to addition of a vector s, in which the bits repre-
senting that founder's meioses equal 1 and all other bits
are 0. Let S denote the subspace spanned by the vectors
sl,... ,sf. Equivalence classes of vectors that differ only
by founder phase are precisely the cosets of S; each coset
contains 2fvectors. Because a pedigree contains no infor-
mation about founder phase, vectors that differ only by
founder phase have equal probability; that is, probabil-
ity is constant on equivalence classes (cosets). The rows
of the matrices Wk are also constant on cosets:Wa,
= W~p , where a and ,3 are two vectors in the same coset.
We therefore can interpret probability vectors and Wk
matrices as indexed by cosets rather than by vectors and
can perform the matrix-reduction algorithm as before,
with cosets replacing vectors. This reduces the complex-
ity of the problem by a factor of 2f (i.e., from 22n to
22-f ), resulting in comparable savings in both time and
memory.

Appendix C
Computing the Single-Locus Inheritance Distribution
at Disease Loci

We describe an algorithm for computing Pdisease the in-
heritance distribution at a disease-causing locus, condi-
tional only on the phenotype data (disease for the disease.
The disease will be assumed to have an arbitrary but
specified mode of inheritance and two alleles, normal
and disease, of specified frequency. As in appendix A,
we note that it is sufficient to calculate P(Ddisease v), the
probability of observing the phenotypic data for each
inheritance vector v.
We need to compute P(Fdisease v) = 1GP({gi} v)

x HliP(4i Igi), where P({gi) v) is the joint probability of
the genotypes {gi) of all pedigree members, conditional
on the inheritance vector v, and where P(DI, gi) is the
probability that the ith pedigree member has phenotype
(i, conditional on having genotype gi (this probability
is determined by the penetrance function for pedigree
member i). Conditioning on the inheritance vector
means that {gi) is completely determined by the founder
genotypes. The sum over (gil can be computed in three
ways:

1. Direct summation over founder genotypes. With f
founders, this requires computing 0(4 ) terms,
which grows exponentially with the number of
founders.

2. Peeling in pedigrees without loops. In peeling (Elston
and Stewart 1971; Lange and Elston 1975; Whitte-
more and Halpern 1994b), one identifies peripheral

nuclear families that are connected to the rest of the
pedigree by a single individual, designated the pivot.
One then computes the probability of the phenotype
data in the nuclear family, conditional on the geno-
type of the pivot, and replaces the penetrance func-
tion of the pivot with these probabilities. In tradi-
tional peeling, one sums over all possible allele
transmissions by the parents in the nuclear families.
Conditioning on an inheritance vector specifies all
transmissions; thus, only one term needs to be com-
puted for each pair of parental genotypes. Peeling
runs in time to O(NF), where NF is the number of
nuclear families in the pedigree.

3. Loop breaking in pedigrees with loops. If loops re-
main after all peripheral families have been peeled
off, one can either (a) sum over the genotypes of all
remaining founders, as in procedure 1, or (b) break
loops, by creating loop breakers or "twins" and con-
ditioning on their genotypes (Lange and Elston 1975;
Whittemore and Halpern 1994b), and then peel off
additional founders, as in procedure 2. Each founder
who must be summed over in direct enumeration and
each "twin" contribute a factor of 4 to the number
of terms that must be computed; that is, the algo-
rithm runs in time O(NF + 4r+t) where NF is the
number of nuclear families that can be peeled off, r
is the number of founders summed over at the end,
and t is the number of loop breakers. We minimize
the running time by choosing to break or not break
loops so that r + t is as small as possible.

In pedigrees without loops, peeling runs in constant
time for each inheritance vector and is very rapid. Al-
though computing time increases for more-complex ped-
igrees, we consider only pedigrees of moderate size,
which cannot contain both many loops and many
founders. Therefore, in practice, we can rapidly compute
P(Ddisease v) -and hence LOD scores -for any pedigree
for which the REDUCE algorithm is computationally
feasible.

Appendix D

Distribution of Z

We now prove equations (5) and (6), concerning the
distribution ofZ under the null hypothesis of no linkage.
Let the operator EG denote expectation over all possible
realizations of the observed marker genotype data, G.
Note that, for every inheritance vector w, EG[P(W G)]
= Puniform(W) under the null hypothesis.
To prove equation (5), we note that Z = YwEvP(w G)

Z(w) for observed data G. Applying the operator EG,
we have
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mean (Z) = EG(Z)

= EG LE P(WIG) Z(w)1

- E EG[P(W G)Z(w)]
wEV

E P.niform(W)Z(W)
wEV

- mean(Z).

To prove equation (6), we note that

2

E: P(wl G)Z(w) S E P(wl G)[Z(W)]2 .

The inequality follows from a straightforward applica-
tion of Jensen's inequality (Royden 1968), since f(x)
= x2 is a convex function. When the operator EG is
applied to both sides, the inequality becomes var(Z)

var(Z).
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