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Summary

To those of us who began life when humans had 48
chromosomes and who began working in genetics when
the (by then 46) chromosomes had no bands and chro-
mosome 4 could not reliably be distinguished from chro-
mosome 5, the mere ability to diagnose and correlate
the clinical phenotypes of genetic disorders with their
molecular genotypes is a source of continuing astonish-
ment and pleasure. Indeed, molecular genetic analysis
of neurogenetic disorders such as Huntington disease
(HD) has provided a steady stream of challenges and
surprises to all who believe the genetic principles that
they were taught about these disorders. The paper by
Rubinsztein et al. in this issue of the Journal highlights
yet another surprise, which was adumbrated even in the
initial paper announcing the discovery of the HD gene:
incomplete penetrance of HD gene mutations.

In 1993, the Huntington’s Disease Collaborative Re-
search Group reported the discovery of the IT-15 gene,
which encodes a protein named “huntingtin.”” Near the
5’ end of the gene a polymorphic CAG repeat sequence
was identified; in 173 normal alleles, there were 11-34
CAG repeats, whereas 74 HD alleles showed expansions
of =42 CAG repeats (Huntington’s Disease Collabora-
tive Research Group 1993). After this illuminating dis-
covery, a number of old beliefs about HD were either
reaffirmed quickly or redefined dramatically.
Anticipation, the earlier onset of disease symptoms
among affected individuals in succeeding generations,
is a phenomenon noted often by family members that
previously had been regarded as a “statistical artifact”
by many geneticists (Vogel and Motulsky 1986, p. 11).
Anticipation in HD can now be explained by two find-
ings: (1) a negative correlation between age at symptom
onset and repeat number and (2) meiotic instability of
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abnormally expanded CAG repeats, with a tendency to
further expansion. Linear correlation coefficients (r)
ranging from —.5 to —.89 have been reported by a num-
ber of investigators studying the relationship between
age at onset and repeat number (Andrew et al. 1993;
Duyao et al. 1993; Kremer et al. 1993; Norremolle et
al. 1993; Rubinsztein et al. 1993; Simpson et al. 1993;
Snell et al. 1993; Stine et al. 1993; Iliaroshkin et al.

1994; Kieburtz et al. 1994; Legius et al. 1994; Novel-

letto et al. 1994; Trottier et al. 1994 Lucotte et al. 1995;
Soong and Wang 1995). The correlation is stronger for
high repeat numbers (and low ages at onset) and is much
weaker for low repeat numbers (and older ages at onset),
implying that, although CAG repeat length is a major
determinant of onset age in juvenile-onset patients, fac-
tors other than CAG repeat length contribute signifi-
cantly to the onset of HD in the elderly (Duyao et al.
1993; Kremer et al. 1993; Stine et al. 1993; Telenius et
al. 1993). The wide confidence intervals for age at onset
for allele sizes in the range of 40— 50 CAG repeats, which
constitute >%; of HD alleles (fig. 1), has led to the ap-
propriate recommendation that repeat number should
not be used to predict age at onset in patients undergoing
predictive testing for HD (Barron et al. 1993; Craufurd
and Dodge 1993; Duyao et al. 1993; Norremelle et al.
1993; Illarioshkin et al. 1994; Legius et al. 1994; Novel-
letto et al. 1994; Soong and Wang 1995).

Unlike normal alleles, most HD alleles manifest mei-
otic instability. Of 600 parent-child transmissions re-
ported worldwide, 69% have shown CAG repeat expan-
sion or contraction (de Rooij et al. 1993b; Duyao et al.
1993; MacMillan et al. 19934; Simpson et al. 1993;
Ziihlke et al. 1993a4; Beilby et al. 1994; Illarioshkin et
al. 1994; Legius et al. 1994; Novelletto et al. 1994;
Trottier et al. 1994; Kremer et al. 1995; Soong and
Wang 1995; author’s unpublished data). In contrast,
<1% of normal alleles show meiotic instability (Ziihlke
et al. 19934; Kremer et al. 1995). In most (but not all)
studies, a sex-of-parent effect is evident. Overall, 69%
of father-child pairs but only 32% of mother-child pairs
have shown CAG repeat expansion, and, whereas <2%
of maternal transmissions reported worldwide show a
change of >3 repeats, up to 21% of all paternal trans-
missions in one study are expansions of >7 repeats
(Kremer et al. 1995). The greatest maternal expansion
reported is 16 repeats, whereas the greatest paternal
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Reported CAG repeat lengths for normal (unshaded) and HD (shaded) alleles, using (A) primers amplifying both the CAG and

CCG repeats (mean: 19.5 repeats for normal alleles and 44.7 repeats for HD alleles) and (B) primers amplifying only the CAG repeat (mean:
19.3 repeats for normal alleles and 43.9 repeats for HD alleles). Six alleles >85 repeats are not included.

expansion is 74 repeats (Kremer et al. 1995). The finding
that very large CAG expansions occur almost exclu-
sively among male transmissions provides a molecular
corollary to the previously unexplained clinical observa-
tion that patients with juvenile-onset HD most often
acquire the HD gene from an affected father (Merritt et
al. 1969).

These case reports regarding transmission of the HD
gene have been biased toward ascertainment of parent-
offspring pairs with either late onset in the parent, early
onset in the child, or both. In addition, the inclusion in
these reports of multiple offspring from the same parent
limits a formal comparison of male and female transmis-
sions. Nonetheless, it is evident that CAG instability
within the HD gene is greater for male meiosis than for
female meiosis. A high degree of mosaicism has been
observed among sperm carrying expanded HD alleles,
whereas >99% of sperm carrying normal alleles have
the same repeat lengths as do somatic cells (MacDonald
et al. 1993; Leeflang et al. 1995). Both somatic repeat
number and allele history (i.e., whether the allele was
derived from an HD patient, an unaffected member of
a new mutation family, or the general population) may
contribute to interindividual differences in meiotic vari-
ability (MacDonald et al. 1993; Goldberg et al. 1995;
Leeflang et al. 1995). Family-specific or ethnic factors
may modify the degree of intergenerational repeat insta-
bility within families or populations, as suggested by
several reports of families with relatively invariant re-
peat numbers (Stine et al. 1993; Rubinsztein et al. 1994;
Tzagournissakis et al. 1995) and of certain populations
that appear to manifest less instability of expanded al-
leles than do others (Beilby et al. 1994; Trottier et al.
1994).

Meiotic instability for CAG repeat number provides
an explanation for the existence of new mutations for
HD. The oft-echoed statement that “the genetic defect
that causes HD originated from a common source and

. . . new mutations are rare and possibly nonexistent”
(Martin and Gusella 1986, p. 1267; similar versions can
be found in the works of Hayden [1981], Vogel and
Motulsky [1986, p. 419], and Harper [1991, p. 287]
and elsewhere) has proved to be wrong. For a small
number of sporadic HD cases with available parents, it
has been possible to demonstrate a parental (almost al-
ways paternal) allele with a CAG repeat number in the
low to mid 30s (Goldberg et al. 19934, 1993b; Myers
etal. 1993; Sanchez et al. 1995). Although in large series
~9%-11% of HD-affected individuals have a missing
or negative family history of HD (Goldberg et al. 19935;
Nance and Westphal 1996), it has been difficult in the
past to demonstrate that such cases meet stringent crite-
ria for the diagnosis of a new mutation (including diag-
nosis of HD in the proband, exclusion of nonpaternity,
parents free of HD at age >60 years, and transmission
of HD from the proband to offspring [Stevens and Par-
sonage 1969]). With the advent of HD gene analysis,
reasonable criteria would now include genotyping and
negative clinical evaluation of both parents with exclu-
sion of nonpaternity, as well as clinical and molecular
confirmation of HD in the proband. Under these criteria,
1.2% (8/650) of unrelated HD cases in a recent large
study represent new mutations (Goldberg et al. 19935).
Under a less stringent definition, up to 3% of cases may
represent new mutations (Goldberg et al. 1993b).

The term “intermediate allele” has been used to refer
to alleles that do not cause HD in individuals carrying
the allele but that are meiotically unstable and able to
cause HD in the next generation (Goldberg et al. 19934,
1993b; Myers et al. 1993). The lower limit of the inter-
mediate allele range may be as low as 27 CAG repeats
(McGlennan et al. 1995). Analysis of markers outside
and within the HD gene has shown that two major
chromosomal haplotypes are associated with up to 77%
of HD cases (MacDonald et al. 1992; Squitieri et al.
1994). Most (but not all) new HD mutations occur on
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chromosomes carrying one of the major haplotypes (de
Rooij et al. 1993b; Myers et al. 1993; Squitieri et al.
1994). The mean CAG length among normal chromo-
somes carrying one of the two major HD-associated
haplotypes is significantly larger than the mean CAG
length among all chromosomes, with a distribution that
includes relatively more values >30 repeats (Squitieri et
al. 1994). Thus, it appears that certain regional chromo-
somal sequences predispose to increased CAG repeat
instability, leading to higher CAG repeat numbers in
normal alleles and to eventual expansion into the HD
range.

The final issue clarified by mutation analysis of the
HD gene has been differential diagnosis. The HD muta-
tion is not present in patients with other psychiatric or
neurological disorders (Kremer et al. 1994; Rubinsztein
et al. 1994). Some patients with “benign hereditary cho-
rea,” however, do have CAG expansions in the HD
gene, whereas others do not (MacMillan et al. 19934,
1993b; Kremer et al. 1994; Britton et al. 1995). Two
reports of schizophrenic patients with 36 CAG repeats
are interesting but probably represent a chance coinci-
dence (Rubinsztein et al. 1994; St. Clair 1994).

Incomplete Penetrance of HD Mutations

Anticipating the findings addressed by Rubinsztein et
al. in this issue, the Huntington’s Disease Collaborative
Research Group (1993) reported that an unaffected sib-
ling of a patient with “sporadic HD had 36 repeats.
By the end of 1993, 10 groups from six different coun-
tries had reported a normal range of 6-37 repeats, an
“intermediate range” of 30-38 repeats, and an HD
range of 35-121 repeats (Andrew et al. 1993; Barron
et al. 1993; Craufurd and Dodge 1993; de Rooij et al.
1993a, 1993b; Kremer et al. 1993; MacMillan et al.
1993b; Myers et al. 1993; Neorremolle et al. 1993; Ru-
binsztein et al. 1993; Snell et al. 1993; Stine et al. 1993;
Ziihlke et al. 1993b). Notably, 48 clinically affected
patients (~2% of the total), some included and some
excluded from the authors’ analyses, had two “normal”
alleles.

Complicating matters, six trinucleotides downstream
from the CAG repeat is a polymorphic CCG repeat se-
quence, which can itself vary in length, being 7-12 re-
peats. The first PCR assays for CAG repeat length used
primers that amplified both polymorphic sequences.
Subsequently, primer sets that exclude the CCG repeat
were designed (Warner et al. 1993). In the European
population, the CCG repeat is polymorphic primarily
when associated with normal CAG repeat lengths, and
the CCG-7 allele cosegregates with the expanded CAG
repeat in 93%-99% of cases (Andrew et al. 1994b;
Barron et al. 1994; Squitieri et al. 1994). In populations
with a low incidence of HD, such as the Japanese, the
Chinese, and the Finns, the overall frequency of the
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CCG-7 allele is somewhat lower, mean normal CAG
repeat lengths are lower, and haplotype distributions for
chromosomes carrying expanded HD alleles are differ-
ent than those in the European Caucasian population
(Squitieri et al. 1994). Although the details of the inter-
actions between the CAG repeat, regional haplotypes,
and the adjacent CCG repeat remain to be elucidated,
from a practical perspective it is clear that estimation of
CAG repeat length by an assay that includes a second
polymorphic site is potentially inaccurate.

Since 1993, a number of studies from centers around
the world have confirmed the presence of expanded
CAG repeats in virtually all patients with HD. Figure 1
shows the combined data, representing 2,848 HD alleles
and 2,641 normal alleles, of 24 series (Andrew et al.
1993; Craufurd and Dodge 1993; de Rooij et al. 1993b;
MacMillan et al. 1993b; Myers et al. 1993; Norremeolle
et al. 1993; Rubinsztein et al. 1993; Simpson et al. 1993;
Snell et al. 1993; Stine et al. 1993; Ziihlke et al. 1993b;
Ashizawa et al. 1994; Barron et al. 1994; Beilby et al.
1994; Davis et al. 1994; Kieburtz et al. 1994; Legius et
al. 1994; Novelletto et al. 1994; Trottier et al. 1994,
Diirr et al. 1995; Illarioshkin et al. 1995; Lucotte et al.
1995; Soong and Wang 1995; author’s unpublished
data) This figure excludes the large series reported by
Duyao et al. (1993) and Kremer et al. (1994), as well
as several studies that appeared to include previously
reported patients. Repeat sizes in the range of 30-39
constitute <1% of normal alleles but almost 3% of
HD alleles. A region of overlap extending over ~35-
38 repeats is apparent.

Worldwide, =82 normal alleles in the 31-39-repeat
range (de Rooij et al. 19934, 1993b; Goldberg et al.
1993a; MacMillan et al. 1993b; Myers et al. 1993; Ru-
binsztein et al. 1993, 1994; St. Clair 1994; Simpson et
al. 1993; Snell et al. 1993; Stine et al. 1993; Ziihlke et
al. 1993b; Beilby et al. 1994; Davis et al. 1994; Legius
et al. 1994; Novelletto et al. 1994; Trottier et al. 1994;
Kremer et al. 1995; Tzagournissakis et al. 1995; author’s
unpublished data), as well as 137 upper alleles of <38
repeats from HD-affected individuals, have been re-
ported (Andrew et al. 19944; Barron et al. 1993; Crauf-
urd and Dodge 1993; de Rooij et al. 1993b; MacMillan
et al. 1993b; Myers et al. 1993; Novelletto et al. 1993;
Rubinsztein et al. 1993; Simpson et al. 1993; Snell et
al. 1993; Stine et al. 1993; St. Clair 1994; Ziihlke et al.
1993a; Ashizawa et al. 1994; Davis et al. 1994; Kieburtz
et al. 1994; Legius et al. 1994; Diirr et al. 1995; Lucotte
et al. 1995; Tzgournissakis et al. 1995). However, al-
though the suggestions that some individuals with repeat
lengths in the 30s live long lives without an illness recog-
nizable as HD and that occasional patients with <37
repeats develop HD are not new, variations in labora-
tory methods and the sparse clinical information pro-
vided have prevented any firm conclusions from being
drawn from these case reports.



In an attempt to burn through the fog surrounding
this issue, Rubinsztein et al. studied, using uniform
methods, 178 individuals with CAG repeat lengths in the
30-40 range. Of these, only 61 patients are discussed
in their paper, and some of these appear to have been
described elsewhere. Thus, it is not possible to adjust,
compare, or combine the data depicted in figure 1 with
the Rubinsztein data. In addition, one can only assume
that the affected individuals with 36-38 repeats are
truly affected with HD, since clinical aspects of their
illness are not mentioned.

Apart from these reservations, the major findings are
not disputable: (1) some patients with 36 repeats have
HD; (2) some very old people with 36-39 repeats do
not have recognizable HD; and (3) a small (but nonzero)
number of individuals would be miscategorized if prim-
ers that fail to exclude the CCG repeat are used. These
findings have several implications for clinical labora-
tories and clinicians who test patients for HD.

It was thought previously that the HD gene mutation
is fully penetrant—that is, that all carriers of the gene
mutation would develop the disease if they lived long
enough. This study demonstrates that nonpenetrance for
CAG repeat expansions exists, at least as defined by
current clinical and pathological means. A new designa-
tion, the “range of incomplete penetrance”, can be de-
fined, referring to allele sizes that have been associated
with HD in some but not all individuals. Although strict
demonstration of nonpenetrance should include (1)
death without symptoms after age 85 years and (2) ab-
sence of HD pathology on autopsy (criteria fulfilled by
one patient in the Rubinsztein study), a less strict defini-
tion might be appropriate for the clinical setting. It
should be emphasized that the intermediate allele range
and the range of incomplete penetrance are not synony-
mous; although the ranges may overlap, they have differ-
ent clinical definitions and implications. As defined by
this study, the range of incomplete penetrance is 36—39
repeats. As noted above, previous studies suggesting that
occasional patients with <35 repeats may manifest HD
are difficult to interpret. It remains possible, however,
that the HD phenotype may occasionally be penetrant
in individuals carrying alleles with <36 repeats. Further
studies are required to determine empirically the fre-
quency of nonpenetrance for different allele sizes in the
range of incomplete penetrance. Clinicians and labora-
tories should counsel new patients appropriately about
the possibility of nonpenetrance of CAG expansions in
the 36—39 repeat range, and they should consider re-
counseling or retesting, using CCG-excluding primers,
any patients whose results were in or close to the 36—
39 repeat range but who were studied with a CCG-
inclusive primer set.

Anticipation, new mutations, intermediate alleles, and
nonpenetrance having all now been demonstrated, a
number of molecular and clinical details remain to be
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elucidated. Adjacent intragenic sequences, regional
chromosomal haplotypes, the normal allele, interactions
of the huntingtin protein with other proteins, or other
environmental factors may be important modifiers of
these aspects of disease expression. It is not yet clear
whether an expanding CAG repeat sequence acquires
its two abnormal properties (meiotic instability and the
ability to cause disease) simultaneously, in a related or
coordinated fashion, or independently. Identification of
family-specific or ethnic factors that modify the dynamic
and disease-related aspects of CAG expansions would
be particularly important to clinicians, as would popula-
tion-based studies from which empiric risk figures for
penetrance and allele expansion could be derived.

From a clinician’s perspective, the dearth of clinical
detail about normal and affected individuals with alleles
in the range of incomplete penetrance and about other
“HD” patients with two unexpanded alleles is unset-
tling, particularly since these may represent up to 5%
of HD patients. Although clinical oversight, misdiagno-
sis, or laboratory error may account for many such
cases, it remains possible that there is a clinical pheno-
type of HD (e.g., among the very elderly) that is not yet
recognized, that a low-frequency mutational mechanism
other than CAG repeat expansion is responsible for HD
in a small percentage of cases (as recently shown for
another trinucleotide repeat disease, Friedreich ataxia
[Campuzano et al. 1996]), or that other, as yet un-
named, phenocopies of HD exist. Only by careful clini-
cal, pathological, and genetic study of these unusual
patients can these clinical issues be resolved.

Finally, the lessons learned from HD may also be appli-
cable to other trinucleotide repeat diseases. HD is one of
a growing group of “CAG repeat” disorders that also
include the less common diseases spinocerebellar ataxia-
1 (SCA 1), Machado-Joseph disease (M]D, or spinocere-
bellar ataxia-3 [SCA 3]), Kennedy disease (spinobulbar
muscular atrophy [SBMA]), and dentatorubro-pallidolu-
ysian atrophy (DRPLA). Although several genetic revela-
tions about HD were evident after the molecular genetic
analysis of the first few hundred HD alleles, other issues
and their resolution have become apparent only as several
thousand normal and expanded HD alleles have been
studied. Although it may be possible to obtain sufficient
empiric data to guide clinicians in the use of the HD
gene test, it may not be possible to analyze an equivalent
number of patients with less common CAG repeat dis-
eases. Knowing that the normal and abnormal ranges,
sensitivities, specificities, and other disease-specific details
for such “orphan tests” are based on a small sample of
patients, clinicians should utilize caution and an open
mind when they apply these tests to clinical use.
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