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Figure 1 Free energy of DNA bending around a nucleosome
core (radius 4.3 nm), calculated for 12-nt DNA segments of FMR1
(unbroken line) and HD (stippled line) loci, on the basis of formulas
described in the text. The number of trinucleotide repeats was normal-
ized to 70 in each case, with the FMR1 and HD repeat structures
being (CGG)9AGG(AGG)1OAGG(CGG)49 and (CAG)70, respectively
(the modeled FMR1 trinucleotide repeat would be in allele class
9+10+ according to the nomenclature of Eichler et al. [1994]). Nucle-
otide position 0 on the X-axis represents the start of the trinucleotide
repeat. Flanking DNA sequences were obtained from the GenBank
database (accession numbers S65791 and L12392) and from Eichler
et al. (1994).

latter case the CAG/CTG repeat has been shown to be
the strongest known natural nucleosome-positioning el-
ement (Wang and Griffith 1995).
Zhong et al. (1995) and others have proposed that

the "purity" of the CGG/CCG repeat may have a sig-
nificant effect on its propensity to expand. Quite aside
from the issue of repeat expansion, it is also interest-
ing to consider the effect that these punctuating AGG/
CCT triplets may have on nucleosome formation at
normal alleles. The two depressions on the graph of
AG of bending of FMR1 DNA (in fig. 1, see the unbro-
ken line at nucleotide positions 30 and 63, relative to
the start of the trinucleotide repeat) are due to AGG
sequences at the 10th and 21st triplets, since the
FMR1 allele was modeled by using a structure of
(CGG)9AGG(CGG)1oAGG(CGG)49. These depres-
sions are caused by the more flexible dinucleotides GA
and AG in the sequence, which have a DNA-bending
AG of 39 J/nmol/nt (note that the plotted value on
the graph is 62 J/nmol/nt because that calculation is
averaged over a window size of 12 nt). Further experi-
ments may indicate whether these two "islands of
flexibility" affect nucleosome formation in a normal

FMR1 allele-and perhaps trinucleotide-repeat sta-
bility, as an indirect consequence.
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Lack of Ancient Polynesian-Amerindian Contact

To the Editor:
Data from mtDNA sequences were recently used in two
studies as evidence for ancient contact between remote
Pacific Islanders and Native Americans directly across
the Pacific Ocean. In the first study (Cann 1994), a Poly-
nesian contribution to the Americas was raised as a pos-
sible explanation for the presence of the mtDNA B lin-
eage (Torroni et al. 1993a) in both Amerindians and
Polynesians. The B lineage is one of four common
mtDNA lineages found in Amerindians and is defined
mainly by a 9-bp deletion in the COII/tRNALYS region.
The B lineage is conspicuously absent in Amerindians
from Beringia (Shields et al. 1993). In the second, two
mtDNA Polynesian sequences not related to the B lin-
eage matched sequences from Amerindians and were
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postulated to be evidence of contact (Sykes et al. 1995).
Here, we test the Polynesian-Amerindian contact hy-
pothesis by using all mtDNA sequence data available
from Pacific (Hagelberg and Clegg 1993; Hagelberg et
al. 1994; Lum et al. 1994; Redd et al. 1995; Sykes et
al. 1995), Amerindian (Ward et al. 1991, 1993, and in
press; Ginther et al. 1993; Horai et al. 1993; Santos
et al. 1994; Batista et al. 1995; Kolman et al. 1995),
Mongolian (Kolman et al. 1996), and Siberian (Shields
et al. 1993; Torroni et al. 1993b) populations. The Pa-
cific sample of 452 persons includes individuals from
contemporary western Pacific and several Polynesian
populations as well as ancient samples from the Pacific
(Hagelberg and Clegg 1993) and Easter Island (Hagel-
berg et al. 1994). The Native American sample consists
of 654 individuals from a total of 18 populations from
North, Central, and South America, including the Ma-
puche from Patagonia (Ginther et al. 1993) and coastal
Chile (Horai et al. 1993) and unpublished data (S. L.
Bonatto, F. M. Salzano, M. Stoneking, M. H. Hutz,
C. E. A. Coimbra, Jr., and R. V. Santos) from the Surui
and Wai Wai populations of Brazil. All individuals have
been sequenced for the first hypervariable segment
(HVS-I, -360 bp) of the mtDNA control region (CR),
but -364 additional bp from the second hypervariable
segment (HVS-II) are available from Indonesian, Polyne-
sian (Redd et al. 1995), Huetar (Santos et al. 1994),
Mapuche (Ginther et al. 1993), Ngobe (Kolman et al.
1995), Surui, and Wai Wai populations only.
Among B lineage sequences, the CR variable sites in

Polynesians are distinct from Amerindians. The suite of
sites common in Polynesians (Hagelberg and Clegg
1993; Hagelberg et al. 1994; Lum et al. 1994; Redd et
al. 1995; Sykes et al. 1995)-the Polynesian motif-
includes three HVS-I substitutions: a C at position
16,217, a G at position 16,247, and a T at position
16,261 (relative to the reference [Anderson et al. 1981]).
The Polynesian motif has been postulated to be of recent
origin and to have increased in frequency together with
the expansion of proto-Polynesian populations (Redd et
al. 1995). In contrast, Amerindian CR sequences of the
B lineage commonly have only one of these variable
sites (C at 16,217), which is common in Southeast Asia
(Melton et al. 1995). In our Amerindian sample no CR
sequences have the Polynesian motif, although one indi-
vidual from Amazonia has two of the variable sites but
lacks the G in position 16,247. This Amerindian individ-
ual also lacks a C at position 146 in HVS-II, a polymor-
phism that is common in Polynesian motif sequences
(Redd et al. 1995).
Two possible explanations for the sharing of identical

sequences between Polynesians and Amerindians are (a)
retention of an ancestral Asian sequence and (b) admix-
ture (ancient or recent). Ancestral sequences more likely
are in basal positions or in the nodes of the phylogenetic

Figure 1 Neighbor-joining phylogenetic tree of Amerindian,
Polynesian, and Indonesian sequences (B lineage only), by using both
hypervariable segments of the mtDNA CR. "Pacific" indicates se-
quences shared between Polynesians and Indonesians. The tree was
estimated from the distance matrix of the proportion of nucleotide
differences. The letter A indicates the Polynesian/Pacific cluster. The
numbers on the branches are confidence probability values (Kumar et
al. 1993).

trees (Castelloe and Templeton 1994), while sharing of
sequences located at the tips or the top of the trees is
more likely explained by admixture (Shields et al. 1993).
We performed phylogenetic analyses (neighbor-joining
method with several distances [Kumar et al. 1993]) by
using sequences from both data sets (HVS-I; HVS-I
+ HVS-II). We found one more case of a shared se-
quence between Polynesians and Amerindians, beyond
the two already described (Sykes et al. 1995), and in all
three cases the shared sequences fall in nodal (basal)
positions in the phylogenetic trees, nodes that originate
both Asian and Amerindian descendent sequences. The
Tahitian lineage 47 (Sykes et al. 1995) is identical to
an Argentine Mapuche (Ginther et al. 1993), a Central
American Kuna (Batista et al. 1995), a Mongolian (Kol-
man et al. 1996), and a Siberian Chukchi (Shields et al.
1993). The B lineage Tongan 33 HVS-I sequence (Redd
et al. 1995) is identical to one of the two most frequent
Amerindian sequences and occurs in the three American
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Table 1

Expansion and Divergence Time Estimates for Polynesians and
Amerindians (B Lineage only), on the Basis of mtDNA Control
Region Sequences: HVS-1, and HVS-1 plus HVS-11 Combined

Time before 95%
Population(s) and Present' Confidence
mtDNA Region n (years) Interval'

Expansion

Polynesians:
HVS-I 25 7,900 400-15,400
HVS-I and HVS-II 25 7,200 2,100-12,400

Amerindians:
HVS-I 46 21,000 8,900-33,300
HVS-I and HVS-II 24 21,000 7,900-34,000

Divergence

Amerindians vs. Polynesians:
HVS-I 71 28,800 13,100-44,500
HVS-I and HVS-II 49 34,400 16,000-52,900

a Times were estimated assuming the following substitution rates:
15% (standard error [SE] 4%) per million years for HVS-I (Ward et
al. 1991) and 11.5% (SE 3%) per million years for both HVS-I and
HVS-II (Stoneking et al. 1992).

b The estimates of the 95% confidence intervals include the error
in the estimates of the mutation rate and tau (Redd et al. 1995); the
SE of tau was calculated by jackknifing (Efron 1982) the sequences.

subcontinents. However, the HVS-II sequence of this
Tongan is different from all HVS-II Amerindian se-
quences described thus far. The last case of sharing is
the Cook Island lineage 45 (Sykes et al. 1995). This
sequence is different from all of the completely se-
quenced HVS-I Amerindians (-600 individuals) but is
identical to a Chilean Mapuche (Horai et al. 1993),
whose first 100 bp of the HVS-I were not sequenced. If
we disregard these first 100 bases for all other known
human sequences, this sequence is also identical to a
North American Athapascan (Shields et al. 1993), two
Siberians (Torroni et al. 1993b), a Mongolian (Kolman
et al. 1996), and one Asian from Tibet (Torroni et al.
1993a). Therefore, all the shared sequences between
Polynesians and Amerindians are much more likely ex-
plained as a retention of ancestral Asian sequences by
both descendant populations than by an ancestral or
recent post-divergence admixture.

If ancient contact between Polynesia and the Americas
occurred, then a phylogenetic tree of mtDNA sequences
should result in an intermingling of sequences from the
Americas with those from Polynesia. In all phylogenies,
the non-B lineage sequences of Amerindians clustered
well apart from those of Polynesians, except for the three
matching sequences discussed above. The B lineage se-
quences of Polynesians clustered in a separate exclu-

sively Polynesian/Pacific cluster (see the A cluster in fig.
1). The Tongan sequence that did not cluster with the
Polynesians in the HVS-I + HVS-II data set tree (see fig.
1) is likely an ancestral sequence, as explained above;
or, alternatively, this Polynesian sample may be an ex-
ample of recent Asian admixture. Although Easter Is-
land is geographically closest to South America, Easter
Islander sequences fell within the Pacific cluster (phylog-
eny not shown).
Mismatch distribution analysis (Sherry et al. 1994) of

the CR sequences provides further evidence of a distant
relationship between Polynesian and Amerindian popu-
lations. Population expansion and divergence times for
the Polynesian and Amerindian samples (only B lineage
sequences were considered) were calculated for the two
data sets. The results (table 1) indicate that Polynesian
populations have a much more recent origin than Amer-
indian populations and that the two diverged -30,000
years ago. This divergence estimate is considerably older
than the date of 3,500 years ago associated with early
Polynesian archaeological sites (Bellwood 1989).

In conclusion, the presence of the B lineage and the
matching of three other sequences between Polynesians
and Amerindians probably reflect a shared Asian origin
rather than direct contact. Nevertheless, these results do
not rule out the possibilities of still-undetected minor
contact and nonmaternal genetic exchange.
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Mitochondrial Myopia: Reply to Bonatto et al.

To the Editor:
Bonatto et al. propose a phylogenetic test that they claim
definitively excludes the possibility that sharing of ma-
ternal genetic lineages between Pacific Islanders and
some Native Americans, assayed by mtDNA sequencing,
could be due to direct contact. Their analysis rests on
(1) an arbitrarily narrow identification of Polynesian
maternal genotypes, which omits known (Lum et al.
1994; Sykes et al. 1995) authentic mtDNA lineages in
Hawaii, Samoa, and the Cook Islands; (2) an overly
optimistic expectation that the tree-building method
chosen will, with statistical confidence, reveal the true
genetic affinities of the lineages examined; and (3) an
assumption that mismatch distributions include relevant
populations in the Pacific and the Americas. Serious dif-
ficulties surround each of these conditions. Further, they
admit that their analysis cannot exclude sex-biased dis-
persal, which could be tested with additional nuclear
genetic markers (specifically, short-tandem-repeat or Y-
chromosome haplotypes) and sequences from viral iso-
lates, such as HTLV-1 (Miura et al. 1994).
The use of the "Polynesian" motif to represent Polyne-

sians is misleading. Lineages including the three substitu-
tions at nucleotides 16217, 16247, and 16261 are found


