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A comparison of matching algorithms on simulated data

1-step <- Significant(F1)
& Not-Signif(F12)

2-step <- Significant(F2)
& Not(1-step)

mean <- Not(1-step or 2-step)

2-step <- Significant(F12)
1-step <- Significant(F1)

& Not(2-step)
mean <- Not(1-step or 2-step)

Algo 1 Algo 2
(backward stepwise)

Fdr = 16% Fdr = 32%
True Step Step Found

0 1 2
0 1845 67 88
1 2 1996 2
2 6 27 1967

True Step Step Found
0 1 2

0 1593 67 340
1 2 1996 2
2 1 27 1972

Table 1: Step height =5σ. Number of timepoints = 15. A total of 2000 random data, 2000 one step data and 2000 two step data
with random step positions. Steps found usingStepMiner algorithm.

The results of StepMiner depend on the order in which various patterns are matched. The best order is not necessarily
obviousa priori. This appendix describes an empirical evaluation on simulated data, in which noise has been added to known
patterns.

Four different algorithms are described in Table 1 and Table2. The algorithms were compared using a simulated time
course with 15 time points. The data consisted of 2,000 “genes” consisting ofN(0, 1) Gaussian noise; 2,000 one-step genes
and 2000 two-step genes with added Gaussian noise (N(0, 1)) and a step height of5σ (σ = 1). Step positions are random.

The FDR was measured on a 10,000 artificial genes and 15 time points with 4,000 one-step genes (2,000 up-regulated,
2,000 down-regulated), 4,000 two-step genes (2,000 “up then down” and 2,000 “down then up”) and 2,000 constant genes.

The False Discovery Rate (FDR) at a p-value threshold of 0.05was estimated by computing the average number of one-
step or two-step patterns discovered in 100 random permutations of the columns divided by the actual number of one-stepsor
two-steps in the data. Note that this FDR doesn’t capture themis-classification of one-step to two-step orvice versa.

Table 1 and Table 2 describe the steps that were found usingStepMiner on this data. Algorithm 2 finds more false two
steps (340 two steps) in the random Gausian data than algorithm 1 (88 two steps). This explains some of the increase in FDR
to 32% from 16%. Otherwise, Algorithms 1 and 2 performed similarly.

Algorithm 3 mis-classifies many two-step genes as one-step genes. It has slightly fewer mis-classifications of noise as
one-step or two-step, and has a slightly better FDR than algorithm 1.

The standard forward stepwise algorithm as described in Table 2 misses very many two step patterns compared to algorithm
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1-step <- Significant(F1)
2-step <- Significant(F12)

& Significant(F2)
& Not(1-step)

mean <- Not(1-step or 2-step)

mean <- Not-Significant(F1)
1-step <- Not-Significant(F12)
2-step <- Not(1-step or mean)

Algo 3 Algo 4
(Forward stepwise algorithm)

Fdr = 15% Fdr = 7%
True Step Step Found

0 1 2
0 1856 72 72
1 2 1997 1
2 6 609 1385

True Step Step Found
0 1 2

0 1928 67 5
1 3 1996 1
2 1391 27 582

Table 2: Step height =5σ. Number of timepoints = 15. A total of 2,000 random data, 2,000 one-step data and 2,000 two-step
data with random step positions. Steps found using standardforward stepwise algorithm.

1.
It is also illuminating to look at the behavior of the algorithms as the number of time points increases. The number of correct

one-step genes and two-step genes versus the the number of time points are plotted. Figure 1, 2, 3 and 4 shows the number of
correct one-step and two-step matches as the number of time points increases from 7 to 15. As can be seen in Figure 1, 2 and
4 the number of correct classifications monotonically increases with the number of time points. However, algorithm 3 misses
more two-step genes as the number of time points increases.

Algorithm 1 has fewer two-steps from the random Gausian datathan algorithm 2. Further, Algorithm 1 has fewer mis-
classifications from two step to one step than algorithm 3. The performance of algorithm 1 increases as the number of time
points increase. Based on these observations, we conclude that algorithm 1 achieves the desirable balance between the number
of true discoveries false discoveries.
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Figure 1: Algorithm 1 : Sensitivity of StepMiner to the number of time points, using random step positions and step size5σ. A
total of 2000 one-step and 2000 two-step functions were usedin the analysis.
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Figure 2: Algorithm 2 : Sensitivity of StepMiner to the number of time points, using random step positions and step size5σ. A
total of 2000 one-step and 2000 two-step functions were usedin the analysis.
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Figure 3: Algorithm 3: Sensitivity of StepMiner to the number of time points, using random step positions and step size5σ. A
total of 2000 one-step and 2000 two-step functions were usedin the analysis.
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Figure 4: Algorithm 4: Sensitivity of StepMiner to the number of time points, using random step positions and step size5σ. A
total of 2000 one-step and 2000 two-step functions were usedin the analysis.
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