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SI Text 

SI Materials and Methods

Bacterial strains, plasmids, and growth conditions.  Bacterial strains and

plasmids used in this study are listed in SI Table 2.  Salmonella enterica serovar

Typhimurium strains are derived from the wild-type strain 14028s.  Phage P22-

mediated transductions were performed as described (1).  Bacteria were typically

grown at 37°C in LB broth (2) or in N-minimal medium at pH 7.7 (3)

supplemented with 0.1 % Casamino Acids, 38 mM glycerol, 20 µM or 10 mM

MgCl2, and 100 µM FeCl3.  Lac+ colonies were selected on N-minimal medium at

pH 7.7 supplemented with 38 mM lactose, 10 µM MgCl2.  Counterselections for

tetracycline-sensitive (TetS) colonies were performed as described (4).  Ampicillin

and kanamycin were used at 50 µg/ml, tetracycline at 12.5 µg/ml and

chloramphenicol at 20 µg/ml.

Construction of chromosomal mutants.  Strain EG17235, which has a tetRA

insertion in the pbgP promoter region, was constructed by the one-step gene

inactivation method (5).  The tetRA genes were amplified using primers 6105 and

6106 and plasmid pEG5342 harboring the transposon Tn10 as template and

recombined into the pbgP promoter region of the wild-type 14028s strain.

 Strain EG17242, which has a synthetic PhoP box instead of the original PmrA

box at the pbgP promoter, was constructed by a combination of the one-step gene

inactivation method and counter selection method for Tets colonies.  A primer
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partial homoduplex containing the synthetic PhoP box was generated using

primers 6107 and 6108 and recombined into the chromosome, replacing the tetRA

gene at the pbgP promoter region in strain EG17235.

 Strain EG17236, which has a tetRA insertion in the ugd promoter region, was

constructed by the one-step gene inactivation method.  The tetRA genes were

amplified using primers 6111 and 6112 and plasmid pEG5342 harboring the

transposon Tn10 as template and recombined into the ugd promoter region in the

wild-type 14028s strain.

Strain EG17238, which has a CmR cassette downstream of the tetA gene in the

ugd promoter region, was constructed by the one-step gene inactivation method.

The CmR cassette was amplified using primers 6245 and 6255 and pKD3 as

template, and recombined into the pbgP promoter region of the EG17236 strain.

 Strain EG17243, which has a synthetic PhoP box instead of the original PmrA

box at the ugd promoter, was constructed by a combination of the one-step gene

inactivation method and counter selection method for Tets colonies.  A primer

partial homoduplex containing the synthetic PhoP box was generated using

primers 6113 and 6114 and recombined into the chromosome, replacing the tetRA

gene at the ugd promoter region in the strain EG17238.

All strains constructed by using PCRs were analyzed by DNA sequencing

and confirmed that the DNA regions generated by PCR had the predicted

sequences and no unexpected substitutions.  Primers used in the construction of

chromosomal mutants are listed in SI Table 3.

Degradation rate analysis by quantitative Western blotting.  Bacteria were

grown as described above, in 25 ml media of low Mg2+ culture for 2 h; then,
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chloramphenicol (200 µg/ml) was added to inhibit protein synthesis.  A 1-ml

aliquot of bacterial cell culture was collected at the indicated time points, mixed

immediately with 1/5 volume of 5% phenol pH 4.3 (Sigma)/95% ethanol to

inactivate cellular proteases, and kept on ice for at least 30 min.  After spinning

down, cells were resuspended in an appropriate volume of B-PER solution

(Pierce).  A whole-cell lysate (10 µg of protein) was run on a Bis-Tris 10% gel

(Invitrogen) with MES SDS Running buffer, transferred to a PVDF membrane,

and analyzed by Western blots using anti-PmrD polyclonal antibodies.  Western

blots were developed by using anti-rabbit IgG horseradish peroxidase-linked

antibodies (Amersham Biosciences) and Supersignal west femto (Pierce).  Protein

levels were digitized and quantified by using a film developed for Western blot,

a fluorescence plate, and an FLA-5000 imaging system (Fuji Film).

Description and Derivation of the Mathematical Models

Our mathematical models for the direct and connector-mediated pathway

dynamics describe temporal changes in the concentration of the pbgP mRNA.

Because it is known that the rRNA concentration does not change when bacteria

are growing at a constant rate (see, e. g., ref. 6), our models also describe the

dynamics of the pbgP mRNA concentration relative to that of 16S rRNA, and can

be fitted to the experimental data presented in Fig. 3A.  The ODEs (ordinary

differential equations) constituting the model of the connector-mediated

transcription control circuit are given below (under each equation, in gray boxes,

we list the corresponding chemical reactions):
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The correspondence between the concentration variables iX  and the chemical

species is as follows: 1X  ~ pbgP mRNA; 2X  ~ PmrD (protein); 3X  ~ PmrA-P

(phosphorylated protein); 4X  ~ PmrA-P/PmrD (protein complex).

In Eqs. 1–4, it is assumed that PmrA-P and  PmrA-P/PmrD interact with

DNA only as homodimers (PmrA-P)2 and (PmrA-P/PmrD)2.  We also considered

the situation when functional heterodimers can form (see Model fitting below);
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this situation is described by a system consisting of SI Eqs. 2–4, and SI Eq. 1

modified as follows:
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The concentration of PhoP-P, which appears in SI Eq. 2, is the external

variable representing the input of the transcription control system.  The output of

the system is the concentration of the pbgP mRNA ( 1X ).  In the above equations,

the constant indirk1  represents the transcription rate for the pbgP inducible

promoter (under full induction conditions), and the constant 2k  is the production

rate for PmrD (for a fully induced pmrD gene).  The constants indirk 1−  and 2−k  are

the rates of exponential depletion (due to biochemical degradation and dilution

resulting from cell growth) of pbgP mRNA and the PmrD protein, respectively.

The constants 3k  and 3−k  are the production and depletion rates for PmrA-P; 4k

and 23k  are the forward and backward rates of the reaction PmrD+PmrA-P ↔

PmrD/PmrA-P.   4−k  is the rate of exponential depletion of PmrA-P due to

protein degradation and dilution.  The constants indirK1  and 2K  are the affinities

(association constants) for PmrA-P binding to the pbgP promoter and PhoP-P

binding to the pmrD promoter, respectively.  In  the above model, we assume

that only phosphorylated regulator proteins activate transcription (7-9), and that

they interact with the corresponding binding sites in the form of dimers (9, 10).

The latter assumption is supported by the facts that the PhoP and PmrA proteins

recognize distinct tandem repeats in promoters (9, 11).

The dynamic equation for the direct regulation circuit is
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Here, dirK1  is the affinity of PhoP-P binding to the pbgP promoter; dirk1  and dirk 1−  are

analogous to indirk1  and indirk 1− .

The expressions for the first- and second-order terms on the right-hand sides

of the model equations SI Eqs. 1–6 follow directly from our description of the

regulatory circuits.  In the models, we focus only on the major components and

neglect intermediate stages of reactions.  It is assumed that the concentrations of

all the chemical substances not explicitly presented in the model stay constant

(e.g., const=]PmrA[ , and the phosphorylation of PmrA occurs at a constant rate).

To simplify the connector-mediated pathway model, we do not include the

variable describing changes in the concentration of pmrD mRNA.  Taking the

approach described in the literature (12-15), we assume that the rate of PmrD

production is proportional to the activity of the pmrD promoter.  We also neglect

the pmrD transcription repression by PmrA-P, because this effect is known to be

relatively weak (16).  Our description of transcription, translation, and mRNA

decay processes as simple zero- and first-order reactions is a simplification

justified by our purpose to consider only the most essential parts of the

expression control systems.

The approach we used to model transcriptional control is as follows: we

assume that two activators, A  and B , can competitively bind to DNA binding

sites, S , with affinities AK  and BK , respectively; that the activators bind DNA as

dimers; and that each binding site is attached to a promoter.  We denote by r  the

rate of transcription (micromoles/liter of transcripts initiated per minute)
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assuming all binding sites are occupied; in reality, only a fraction, ]1,0[∈p , of all

activator sites are bound.  We assume that transcription initiation is possible only

for promoters bound to activator proteins.  Therefore, the general expression for

the transcription initiation rate is pr .  Our objective is to find an expression for

p  in terms of the concentrations of the activator proteins.

The activator protein A  binds to the activator site as a result of the reaction

SASA AK
22 →←+ ;

the binding reaction for B  is similar (while this reaction is a simplification of

reality, we assume that the AS  form (bound monomers) never accumulates

significantly; as a consequence, the equilibrium equations for more detailed

binding mechanisms are well approximated by the one for the reaction above

(17)).  It can be assumed that the binding reactions are in equilibrium at all times

because protein–DNA binding is much faster than other reactions in the system

(transcription, translation, phosphorylation).  Therefore, the concentrations of the

reacting species satisfy the equations
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This expression is used to model competitive binding of PmrD/PmrA-P and

PmrA-P to the binding sites upstream of the pbgP promoter (16) in the connector-

mediated regulation model (SI Eq. 1).  The use of the relation KKK BA ≈≈  is

justified by our assumption that PmrD/PmrA-P and PmrA-P have

approximately the same DNA binding properties.  We also postulate that the

concentration of free binding proteins is considerably larger than the

concentration of binding sites, which is valid because the bacterial cell normally

has only one copy of a gene, but hundreds or even thousands (18) of copies of

regulator proteins.  This postulation allows us to disregard changes in the

concentrations of free proteins (and complexes thereof) resulting from the

formation of protein–DNA complexes, and thus ignore the details of the binding

mechanism.

If in the regulation model described above we consider only one activator

protein, then we will arrive at the expression for transcription control by PhoP-P

which was used in SI Eqs. 2 and 6.  If we consider the possibility of DNA binding

by the heterodimers AB , then we will obtain the expression used in SI Eq. 5.

Steady-State Equations and Induction Ratios

The steady-state equations for the models are obtained from SI Eqs. 1–6 by

setting the time derivatives to 0.  SI Eq. 6 for the direct regulation model has a

unique solution:
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The solution to SI Eqs. 1–4 can be found by solving SI Eqs. 2–4 and then

substituting the solution into the steady-state version of SI Eq. 1.  The resulting

steady-state expression for the pbgP mRNA concentration reads:
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For ])P-PhoP([1X , the steady-state concentration of pbgP mRNA, the induction

ratio is defined as )(/])P-PhoP([ 011 PXX , where 0P  is the concentration of PhoP-P

under repressing conditions ( ]P-PhoP[0 <<P ).  From this definition and SI Eqs.

7–8 it follows that, for both direct and connector-mediated regulation models, the

induction ratio does not depend on 1k  and 1−k .  The rate constant 1k  reflects the

activity of the pbgP promoter, therefore, the models predict insensitivity of the

induction ratios to variations in pbgP promoter activity for both direct and PmrD-

mediated control circuits.

A characteristic feature of the induction ratio curves corresponding to the

experimental data is that they approach a plateau for ratios greater than 10 (Fig.

2B).  However, the curves for the corresponding models do not show this

property (Fig. 3B).  Such a discrepancy can be explained as follows.  The steady-

state induction ratio ])Mg([ 2+I  can be represented as a composition of functions:

]))Mg([(])Mg([ 22 ++ = gfI , where P]-[PhoP])Mg([ 2 =+g .  Fig. 2B shows the

functions ])Mg([ 2+I , whereas Fig. 3B shows the functions )P]-[PhoP(f .

Approaching a plateau is equivalent to having small absolute derivative

|])Mg([| 2+′I ; using the chain rule for differentiation, we obtain

|])Mg([||]))Mg([(||])Mg([| 222 +++ ′′=′ ggfI .
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When [Mg2+] is low, the system approaches its maximum capacity to generate

PhoP-P, therefore, ])Mg([ 2+g  should reach a plateau for low [Mg2+].  This

assertion is supported by modeling (19).  This implies that for low [Mg2+],

|])Mg([| 2+′g  is quite close to 0, and so is |])Mg([| 2+′I , although |]))Mg([(| 2+′ gf  is

not.

Cascade-Like Properties of the Connector-Mediated Pathway

As a result of model fitting for the connector-mediated pathway, we obtained a

parameter set such that 44 −>> kk  (the PmrA-P/PmrD complex formation rate is

significantly larger than the complex degradation/dilution rate, SI Table 5).

Therefore, we can simplify the steady-state equations for the PmrD-mediated

control circuit by dividing the equations by 4k  and using the approximate

equality 0/ 44 ≈− kk .  With the notation 4/ kkc ii =  for the coefficients, the

simplified system of equations reads:
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Using the property jiji kkcc // = , we can find the system’s unique solution:
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For the interval of [PhoP-P] concentrations presented in Fig. 3B, 1]P-PhoP[ 2
2 <K

(SI Table 5).  Applying the asymptotic formula 

€ 

a /(1+ a) = a − a2 + o(a2) to SI Eq. 10

and neglecting the small terms 
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Plugging this expression into SI Eq. 9, we arrive at the simplified equation

}]P-PhoP[)/{(1
}]P-PhoP[)/{(
42

2
22

331

42
2

22
331

1

1
1 KAkkK

KAkkK
k
kX indir

indir

indir

indir
indir

++
+

=
−

−

−

.                         [13]

For the fitted model, 002.0/ 33 =−kk  (SI Table 5), so we can neglect the term

)/( 2
3

2
3 −kkO  and simplify even further:
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For any 2K , SI Eqs. 13 and 14 are valid for sufficiently small ]P-PhoP[ .  SI Eq. 14

is a Hill equation with Hill coefficient 4, whereas SI Eq. 7 for the direct regulation

circuit is a Hill equation with Hill coefficient 2 (for a discussion of Hill equations

and their properties, see refs. 20-22).  The increase in the Hill coefficient

(compared to direct regulation) can be attributed to the presence of two stages of
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transcriptional regulation in the connector-mediated pathway, and is a rather

general property of multi-stage regulatory cascades whose stages have sigmoidal

signal–response curves (23).

Let
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be the induction ratios for the direct and connector-mediated pathways (as in

Steady-State Equations and Induction Ratios above, P]-[PhoP0 <<P  is the

concentration of PhoP-P under repressing conditions).  It follows from SI Eqs. 7

and 9–12 that, if 4k  (the PmrD/PmrA-P complex formation rate) is large enough

(which is true for our fitted model),
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From SI Eq. 13 we have
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Consequently, if 0P  is small enough and ( )202
33 /)/( PkkO −  is negligible compared

to )( 2
0PO , then )(/)( 0101 PXPX indirdir  is large (>> 1).  In this case, SI Eq. 15 gives
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meaning that there exists a concentration of PhoP-P, ),[~
0 ∞∈ PP , such that

)~()~( PIPI dirindir = ,    ])P-[PhoP(])P-[PhoP( dirindir II >    for    all     P~]P-[PhoP > .
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In principle, we can choose different high values of [Mg2+] (and, therefore,

different small values of [PhoP-P]) to represent repressing conditions,

)][Mg( 2
00

+= PP .  For some choices of 0P , we will have 0
~ PP =  (such as in Fig. 3B);

for other choices, we may have 0
~ PP > .  It should be noted that, because in reality

0/ 33 >−kk , for vanishingly small ]P-PhoP[ , the terms ( )22
33 ]P-PhoP/[)/( −kkO

cannot be neglected and SI Eq. 17 will not hold.  However, the use of vanishingly

small 0P  is not biologically meaningful.

Computational Procedures

Dynamics and steady-state computations.  The model trajectories in Fig. 3A

were generated using MATLAB’s SimBiology function sbiosimulate.  The

steady-state solutions for the direct regulation model were computed using SI

Eq. 7.  The steady states for the connector-mediated pathway were found as

follows.  First, the steady-state versions of SI Eqs. 2–4 were reduced to a

quadratic equation in 4X , which was solved using MATLAB’s roots function.

If the solution produced one positive root (or two positive roots very close to

each other) such that the resulting 2X  and 3X  were also positive, then these

values were used to find 1X  (from the steady-state version of SI Eq. 1).  If it did

not, the steady state was found by solving SI Eqs. 1–4 (using MATLAB’s function

ode15s) on increasing time intervals until convergence, similarly to the way

described in (24).
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Model fitting.  Model fitting with models defined by SI Eqs. 1–4 and SI Eq. 6 was

performed as described in Materials and Methods of the main article; the fitting

results are shown in Fig. 3A, and the resulting parameter sets are given in SI

Tables 5 and 6.  The data on relative PhoP-P levels for pathway activation were

taken from ref. 25 and normalized so that the peak level has the value 2; this

normalization allowed us to avoid unrealistically high values for the [PhoP-P]

interval in Fig. 3B and SI Fig. 6B, and unrealistically low values for 2K  and dirK1 .

The fitting method ga was empirically found to give better fits for the connector-

mediated pathway model, while the method fmincon worked better for the

direct regulation model.  For the PmrD pathway model, we performed 10 fitting

experiments and selected the best final fit.  For the direct regulation model, we

also performed 10 fitting experiments; the resulting fits gave parameter sets quite

similar to each other, so we randomly selected one of them to be the final fit.  At

the randomized stage of our fitting procedure, the fitting routine was initialized

with 20 different parameter sets, in which some of the parameters were selected

at random.  At the initial value adjustment stage, we performed 15

nonrandomized fitting–adjustment iterations.

In the fitting procedure for the direct regulation model, we used the condition

that the depletion rate 0154.01 ≥−
dirk , where 0154.0  corresponds to cell growth

rate with doubling time 45 min.  In the fitting procedure for the connector-

mediated pathway, we assumed that 234 kk >> , and 33 kk >>− . We thus chose

1004 =k , 123 =k , 503 =−k , 1.03 =k ; these values were neither randomized nor

modified in the process of fitting.  Other fixed values were 52 =k , 2.01 =−
indirk .  To
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estimate  2k  (PmrD translation rate under full activation), we used the data from

ref. 26 according to which the average time between two consecutive translation

initiation events on one mRNA molecule is 2 s, which gives the initiation rate

1min30s2/1 −= ; it is also known that translation initiation rates vary by several

orders of magnitude (27).  The estimate for indirk 1−  (mRNA degradation rate) was

based on the article (28), which states that  80% of E. coli mRNA have half-lives

between 3 and 8 min (exponential decay rate 0.2  1min−  corresponds to the half-

life of ~3.5 min); in general, mRNA half-lives vary from 40 s to 20 min (29).

After fitting the connector-mediated pathway model (SI Eqs. 1–4) to the

experimental data in Fig. 3A and generating Fig. 3B, we used the obtained

parameter values to generate analogous curves for the PmrD regulation model

with formation of active heterodimer (PmrA-P and PmrD/PmrA-P) (SI Eqs. 2–5).

The difference between these curves and the curves in Fig. 3 was negligible,

which suggests that heterodimer formation does not play an important role in

the connector-mediated pathway dynamics.


