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Identification of regulatory QTL

In order to identify regulatory QTL, we performed linkage analysis treating

gene expression levels as quantitative traits in a previously described data

set consisting of 112 haploid segregants genotyped at 2954 SNP markers

[1, 2, 3]. We analyzed a total of 5067 genes, removing 115 genes from the

5182 described in Ronald et al. (2005). These 115 genes were excluded

because they had fewer than 100 synonymous sites from which we could

estimate the locus-specific coalescence times (see below) due to overlap with

other annotated ORFs or frameshift mutations in RM.

To identify regulatory QTL shown in Figure 1 we performed non-parametric

linkage analysis using R/qtl [4, 5]. To determine the critical LOD score as-

sociated with a false discovery rate (FDR) ≤ 0.05, we formed a single permu-

tation of the rows of the 112 × 5067 phenotype matrix relative to the rows

of the 112 × 2954 genotype matrix. This procedure preserves the correlation

among gene expression levels and genotypes for the 112 haploid segregants,

but breaks the correlation between gene expression levels and genotypes. We

then obtained the genome-wide maximum LOD score for each of the 5067

gene expression traits in the permuted data. The minimum LOD score at

which the number of genome-wide maximum LOD scores in the permuted
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data was less than 5% of the number of genome-wide maximum LOD scores

in the observed data gives the critical LOD score (LOD ≥ 3.58) associated

with FDR ≤ 0.05. Note that this procedure provides a conservative estimate

of the FDR because it assumes π0, the proportion of truly null tests, is equal

to 1 [6].

To identifiy cis-acting QTL, we performed a hypothesis driven non-parametric

linkage analysis where we tested each gene expression trait for linkage at the

single marker closest to the location of the gene as described in Ronald et

al. (2005). This approach reduces the multiple testing associated with whole

genome linkage analysis and therefore improves power to detect regulatory

QTL. The QTL detected by this procedure map to the same locations when

multiple markers are used in a multipoint approach; we also found that the

majority of such QTL are due to cis-acting polymorphisms [3]. Out of the

5067 gene expression traits analyzed, 1206 showed significant linkage at a

permutation based FDR ≤ 0.05 (LOD ≥ 1.37), determined by permuting

the rows of the 112 × 1 phenotype matrix relative to the rows of the 112 ×

1 genotype matrix, for the phenotype and genotype matrices corresponding

to each of the 5067 traits. These 1206 significant linkages are a subset of the

1233 described in Ronald et al. (2005) (due to the removal of 115 genes as
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described above) and a superset of the 549 genes shown in Figure 1 for which

the cis-acting variant was the strongest regulatory QTL for the trait across

the entire genome and was significant at LOD ≥ 3.58.

Locus-specific coalescence times

In order to model the rate of accumulation of cis-acting QTL under neutral

models and under models with selection, we estimated the locus-specific co-

alescence times based on the synonymous substitution rate between BY and

RM for each gene.

We created whole chromosome alignments for BY and RM using LAGAN

[7], manually inspected the alignments, and corrected two major inversions,

one on chromosome III from 134990 to 143476 and the other on chromosome

XIV from 575382 to 599468. We then estimated the locus-specific coalescence

time for each gene by counting the number of synonymous substitutions

per site within 2 kb surrounding the promoter of each gene, excluding any

gene having fewer than 100 synonymous sites in this 2 kb window, ≥ 5%

gap characters, or ≤ 95% total sequence identity. These criteria led to the

exclusion of the 115 genes described above. Note that 2 kb corresponds
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to the typical recombination block size reported previously [8]. This block

length is also supported by the observation that the synonymous substitution

autocorrelation function (calculated by counting the number of synonymous

substitutions per site in 1 kb intervals across the chromosomes) can be closely

approximated by simulated data under a recombining coalescent framework

(using ms [9] and Seq-Gen [10]) with block lengths of approximately 1.5 kb

to 3.5 kb (Figure S1). Thus, the observed variation in substitution rate is

consistent with the pattern produced by ancestral recombination.

Alternative models for the rate of accumula-

tion of cis-acting QTL

We considered a number of other alternative models besides purifying se-

lection which might confound our analysis of the rate of accumulation of

cis-acting QTL.

First, we noted that the estimated fraction of genes subject to purifying

selection δ was sensitive to the estimated power to detect cis-acting QTL,

with lower estimates of the power leading to lower estimated values of δ.

For example, if the estimated power was 0.4 rather than 0.504, then the
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estimated value of δ was 0.01 (p = 0.40). If the estimated power was 0.6

the value of δ was 0.37 (p = 1.1 × 10−8). This sensitivity is to be expected

because if the power to detect cis-acting QTL is low, the observed pattern

of linkages captures little information about the underlying pattern of cis-

acting regulatory variation. In contrast, if the power is high, then most of

the true underlying pattern is captured by linkage analysis. Similarly, if the

estimated value of the false-positive rate was much higher, for example 0.1,

the value of δ was 0.12 (p = 0.17), whereas if the estimated false-positive

rate was much lower, for example 0.001, then the estimated value of δ was

0.26 (p = 1.8× 10−8). Again this sensitivity is to be expected because if the

false-positive rate is high, then much of the true underlying pattern of cis-

acting QTL is obscured by the large amount of noise in the linkage analysis

results.

In order to further explore the sensitivity of our analyses to the estimated

power to detect cis-acting QTL and the false-positive rate, we repeated our

analyses under different linkage analysis significance thresholds. At a p-value

cutoff of 0.001 (corresponding to an FDR of 0.003), 801 genes showed sig-

nificant linkage to markers nearest to their own loci. The estimated power

and false-positive rate were 0.355 and 0.011, respectively, consistent with the
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expectation that these quantities must both be smaller at a more stringent

threshold for QTL detection. Using these data, we found that the maxi-

mum likelihood estimates of δ was 0.24 with the purifying selection model

showing significant improvement over the neutral model (p = 1.1 × 10−3).

At a significance threshold of 0.05 (FDR = 0.076) 1700 genes showed sig-

nificant linkage to their own loci, and the estimated values for the power,

false-positive rate, and δ were 0.649, 0.101, and 0.31, respectively, with the

purifying selection model showing significant improvement over the neutral

model (p = 3.0×10−10). Thus, provided that the estimated power and false-

positive rate correspond to the significance threshold used for detection of

cis-acting QTL, our estimate of δ is reasonably robust to variation in these

quantities. Conversely, these analyses suggest that our estimate of δ is rela-

tively insensitive to the significance threshold used to detect cis-acting QTL,

provided that the rates of false-negatives and false-positives are taken into

account.

Next we considered the effect of hybridization artifact. It has previously

been shown that inter-species (or inter-strain) comparative gene expression

studies which utilize an array platform designed with respect to one indi-

vidual can detect hybridization differences due to polymorphisms in other
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individuals relative to the reference, rather than to expression differences in

other individuals relative to the reference [11]. These apparent expression

differences would map to the locus of the gene in question mimicking cis-

acting QTL. The probes on the expression arrays (designed with respect to

the S288C genome, to which BY is isogenic) are approximately 1 kb in length

and the average substitution rate in the coding sequence between BY and

RM is approximately 0.005, so we expect hybridization artifact to be less ex-

treme than the effect detected by Gilad et al. (2005). Moreover, we suspect

that such linkages to such artifactual cis-acting QTL would tend to bias our

analyses toward the neutral model (as was suggested by Gilad et al. in the

context of contrasting their support for a purifying selection model of primate

gene expression evolution with previous studies supporting a predominantly

neutral model [12]) for several reasons. First Gilad et al. noted that genes

with differential expression with larger effect sizes and higher significance

were less likely to be due to hybridization artifact [11]. Thus, hybridization

artifact will tend to inflate the number of weakly significant weakly differen-

tially expressed genes. This tends to inflate Prob(cis-acting QTL) because

this estimate is based on the complete distribution of p-values, including

those which signal very slight differences in expression. An upward bias in
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this quantity leads to an underestimate of the power to detect cis-acting

QTL and, as described above, this shifts support toward the neutral model.

Second, the role of hybridization artifact would be expected to increase as

the locus-specific divergence increases, consistent with the neutral model of

cis-acting QTL evolution. Thus, both because of its effect on the power

estimate and its correlation with the locus-specific divergence, hybridization

artifact would contribute support to the neutral model, but our analyses sug-

gest that cis-acting QTL are not accumulating fast enough to be consistent

with neutrality. Finally, we emphasize that our previous allele-specific ex-

pression quantitiative PCR experiments and comparative sequence analyses

showing a strong signature of non-coding regulatory polymorphisms do not

support a major role for hybridization artifact among genes with expression

levels showing linkage to their own loci [3].

We next considered the possibility that major trans-acting QTL might

bias our conclusions because of their widespread effects on many linked genes.

Note that we attempt to correct for linked trans-acting QTL in our estimates

of the power and false positive rate, but these calculations assume a uniform

distribution of trans-acting regulatory loci which is not the case as can be

seen from Figure 1. In order to explore this effect, we excluded chromosomes
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II, III, V, VIII, XII, XIII, XIV, and XV which have major trans-acting QTL

affecting a large number of genes throughout the genome and repeated the

likelihood calculations. The estimated value of δ was 0.27 with the purifying

selection model retaining statistical significance (p = 2.0× 10−3), indicating

that major trans-acting QTL are not significantly impacting the models.

If a large fraction of genes had expression levels too low to detect linkage

to true underlying cis-acting QTL, this might lead to underestimation of the

true underlying value of Prob(cis-acting QTL), causing us to over estimate

the power to detect these QTL and hence to erroneously reject the neutral

model. In order to test this possibility, we performed whole genome non-

parametric linkage analysis on the expression levels of all 5067 genes using

R/qtl and determined whether we were able to detect linkages elsewhere

in the genome, even if we were unable to detect significant linkage to cis-

acting QTL. We therefore sought to estimate π0, the estimated proportion

of null tests, for the most significant linkage in the entire genome for each

gene expression trait. The multiple testing involved in obtaining a genome-

wide maximum LOD scores means that twice the resulting non-parametric

LOD score is no longer distributed as a χ2
1 random variable. In order to

obtain p-values associated with these genome-wide maximum LOD scores we
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performed 105 whole genome scans on a permuted phenotype, collecting the

genome-wide maximum LOD score from each permutation, and ranked each

of the 5067 observed genome-wide maximum LOD scores in relationship to

the 105 permuted data scores to obtain p-values. The estimated π0 was ap-

proximately 0.0547 under this permutation based scheme for multiple testing

correction. Note that inspection of Figure 1, in which 2368 out of 5067 genes

show significant linkage, indicates that nearly all genes showing at least weak

differential expression due to regulatory QTL is not unreasonable. Our abil-

ity to detect 1− π0 as large as 0.94 indicates that essentially all of the genes

analyzed are expressed at levels sufficient to detect QTL somewhere in the

yeast genome in a data set of the size of this one. Thus, the lower estimate

of 1− π0 ≈ 0.49 for linkage at the locus of the gene in question is due to the

absence of cis-acting QTL at these loci rather than to low gene expression.

Finally, we considered the possibility that our purifying selection model

might instead be capturing the fact that there are two classes of genes in the

yeast genome with different numbers of regulatory sites. In this case, the

probability that a gene shows cis-acting variation is

Prob(cis-acting QTL) = 1− (1− δ)(1− e−θtn1)− δ(1− e−θtn2)

where n1 is the average number of regulatory sites in genes of the first type
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(which occur with frequency 1− δ) and n2 is the average number of regula-

tory sites in genes of the second type (which occur with frequency δ). Note

that under the purifying selection model from the main text, δ fraction of

genes have no mutable regulatory sites per gene (n2 = 0) because purifying

selection is assumed to have removed variation at regulatory sites in these

genes. Under the model where n2 is allowed to vary, the maximum likelihood

estimates of δ, n1, and n2 were 0.24, 145, and 0.001. This model represents

no significant improvement over the purifying selection model, and the pa-

rameter estimate of n2 = 0.001 suggests that the data are best fit by a model

in which δ fraction of genes have essentially have no mutable regulatory sites

per gene. We believe that the most likely explanation for this small number

of mutable regulatory sites is that purifying selection has eliminated regula-

tory polymorphism, but we cannot rigorously reject the possibility that such

extreme variation in the number of regulatory sites per gene exists and that

this accounts for the dampened rate of accumulation of cis-acting QTL.
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Rare derived allele skew versus cis-regulatory

effect size

In order to determine whether the signature of purifying select was stronger

for genes with larger cis-acting fold changes in expression, we determined

the magnitude of the allele frequency skew as a function of this quantity

(Figure S2). The fold change in expression due to cis-regulatory polymor-

phism was estimated as max(xBY ,xRM )
min(xBY ,xRM )

, where xBY and xRM were the mean

expression level in segregants bearing the BY and RM alleles, respectively,

at the marker closest to the gene in question. Sample sizes were 932, 908,

617, 367, and 228 genes with fold changes > 1, ≥ 1.05, ≥ 1.1, ≥ 1.15, and

≥ 1.2, respectively. The magnitude of the allele frequency skew became more

variable at thresholds above 1.2, due to the small number of genes with fold

changes in exceeding the threshold. Although the trend was not statistically

significant (Fisher’s exact p = 0.24 for promoter polymorphisms in genes

with fold change ≥ 1.2 versus < 1.2), this analysis showed that the skew

toward derived alleles increases for genes with larger cis-regulatory expres-

sion fold change. This suggests that regulatory alleles associated with larger

expression changes tend to be more recent and presumably more efficiently
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eliminated by natural selection.

Ancestral selection graph simulations

In order to interpret the skew in the allele frequency distribution of cis-acting

regulatory polymorphisms, we performed simulations under the ancestral se-

lection graph, an extension to the coalescent which incorporates natural se-

lection [13, 14]. This allowed us to estimate what scaled selection coefficient

would give rise to the observed skew toward rare derived alleles at regulatory

sites relative to linked neutral sites. The demographic model is illustrated in

the percolation diagram shown in Figure 5. At time t = 37×Ne in the past,

a common ancestral population representing both S. cerevisiae and S. para-

doxus splits into two independently evolving populations. In the simulations,

which are performed going backward in time, this corresponds to transferring

all real and virtual ancestors in the S. cerevisiae and S. paradoxus popula-

tions into a common ancestral population. The value of t is derived from

the maximum likelihood estimate (using PAML [15]) of the synonymous site

divergence (approximately 0.38, thus θ
2
(2t + 2) = 0.38) between S. cerevisiae

and S. paradoxus.
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In addition to the selection model described in the main text, we varied

whether transition mutations from the most strongly preferred type were as-

sociated with relatively smaller or larger changes in fitness. Figures S3 and S4

show results for σT = 0, σG = 2Nes, σC = 2 × 2Nes, and σA = 3 × 2Nes

and σG = 0, σT = 2Nes, σC = 2 × 2Nes and for σA = 3 × 2Nes with

Nes = 0.0, 0.2, 0.4, ..., respectively. Under these models, the observed skew

toward rare alleles is best fit when 2Nes = 1.2 (95% CI 0.8-1.4) or 1.1 (95%

CI 0.7-1.3), respectively. The relative rate of polymorphism between the

sampled individuals representing BY and RM at the selected site compared

to the neutral site was 73% or 72%, respectively. Note that while the best

fitting value of Nes is somewhat less under these selection models than un-

der the model considered in the main text, the estimated value of the key

parameter of interest, ζ, the relative rate of polymorphism at the selected

site, is very similar under all models.

We also considered models with fewer than four selective classes. Models

in which σT = σC = 0 and σG = σA = 2Nes showed no detectable skew

toward rare alleles so we did not consider them further. Models in which

σT = σG = 0 and σC = σA = 2Nes yielded similar estimates of 2Nes (2.3)

and ζ (0.71) as the four selective class models described above. Models in
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which σT = σC = σG = 0 and σA = 2Nes showed the expected skew toward

rare alleles but lead to increased rather than decreased levels of polymor-

phism between the two fitness classes for the range of selection coefficients

which best fit the observed allele frequency skew. Given that we observe

fewer rather than more cis-acting expression changes than expected under

neutrality, we did not consider these models further.
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