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SEGREGATION analyses, as well as current methods for the detection of linkage,
tacitly assume that all children attributed to a given man and woman, and not
clearly at variance genetically with them, are, in fact, their offspring. It can be
readily shown, however, that there can exist children who although not the off-
spring of the man and woman in question are not demonstrably the children of
others. The effect of this cryptic nonpaternity or nonmaternity on segrega-
tion analyses or linkage studies is difficult to evaluate, but must be related, in
some manner, to the over-all frequencies of these events. It is of some impor-
tance then to be able to estimate these latter parameters. For a variety of reasons,
but primarily because of its presumed greater occurrence, our attention will be
directed solely to the estimation of nonpaternity. As we shall use this term, it is
not synonymous with illegitimacy but rather it encompasses all instances in
which the mother of a child incorrectly identifies the child's father. Thus, a
child born out of wedlock but as a precondition for marriage would not be in-
cluded among cases of nonpaternity provided that the mother correctly identified
the father of the child.
A relationship exists between the over-all frequency of nonpaternity (A) and

the frequency (D) which can be detected on the basis of examinations of
mother, child, and putative father with respect to a particular trait (or group of
traits). Under certain conditions, namely, that the biological or "true" father
be chosen at random from the population, and that the mother and putative
father be unrelated, the ratio, D/x, can be shown to be a function of gene fre-
quencies alone. With the upsurge in interest in small, primitive communities,
many of which have unusual patterns of procreation, it is readily conceivable
that two or more of these individuals (mother, "true" father, and putative
father) may be related. A more general expression for D/X, applicable to these
situations, is desirable. It is the purpose of this report to derive this more general
expression, and to present a method for the estimation of the over-all frequency
of nonpaternity. The method also affords estimates of the frequencies of the
genes associated with the trait which provides the basis for the paternal
exclusion.

THE PROPORTION OF NONPATERNITY WHICH IS DETECTABLE

Intuitively, the proportion of nonpaternity which is detectable must vary with
the mode of inheritance of the trait used to demonstrate nonpaternity. Most
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MAcCLUER AND SCHULL

frequently this trait will be some serotype. Accordingly, we shall be primarily
concerned with two genetically different situations. First, we will define the
proportion of nonpaternity detectable on the basis of a trait presumed to arise as
the consequence of a single pair of autosomal alleles without dominance. Second,
we will define this proportion when the trait is presumed to arise as a result of a
single pair of autosomal alleles with dominance. In both instances, we shall
assume that the population in question satisfies the Hardy-Weinberg equilibrium
conditions, and that the probability, A, that the "true" father is incorrectly
identified is a fixed value independent of genotype or person. Clearly, neither of
these assumptions is apt to be precisely fulfilled in any real situation; however,
of the two, the constancy of x would appear to be the more tenuous.

Alleles Without Dominaice
Consider, now, the case of two autosomal alleles without dominance, where

three genotypes, AA, AB, and BB are distinguishable. Suppose that p is the
frequency of the gene A and q ( = 1 - p) is the frequency of the gene B. Un-
der this system, or for that matter those systems to be considered subsequently,
the genetic correlation, p, between the putative father and the "true" father can be
expressed in terms of three probabilities, C1, CT, and co, where (see Li and Sacks,
1954)
c= probability that the putative and "true" fathers have, at a given locus,

two genes identical by descent;
CT =probability that the putative and "true" fathers have one gene identical

by descent;
o= probability that the putative and "true" fathers have no genes identical

by descent;
and c1 + CT + CO 1. The corresponding probabilities for the mother and the
"true" father are di, dT, and do. The specific values to be assigned to these
probabilities depend upon the biologic relationship which is postulated; these
values are of themselves of no particular moment to our argument.
The derivation of a general expression for D/x is summarized in table 1. It

should be noted that nonpaternity can not be detected if (1 ) the "true" father
is of the same genotype as the putative father, or (2) the putative father is of
genotype AB. These cases have, therefore, been omitted from the table. It should
also be noted that we have assumed that the "putative" father and mother are
unrelated. This is a matter of convenience, and the restriction can be easily re-
moved. Be this as it may, the probability of detecting a case of nonpaternity,
D/x, is equal to the sum of the four elements in column (8). After some
manipulation, this expression reduces to

D pq [l - (1/2 ) CT-C1l]{ -(1/2½)d -(1¼4)dT-d)pq +p2q2cod (1)

where (½2 )CT + ci] is the genetic correlation, p, between the putative father
and the "true" father, and [di + ( /2)dT] is the comparable figure for the
mother and "true" father.
Of particular interest are several special situations which can be readily de-

duced from equation (1 ). These are the following:
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Case 1. If the mother, "true" father, and putative father are all chosen at
random, they will have no genes identical by descent. Thus,

Cl= di = ; CT =dT O; co = do = 1; and

= pq( l -pq). (2)

This expression has been previously given by Wiener (1931), and by Cotter-
man (1951).

Case 2. If the mother and "true" father are unrelated, but the "true" father
is related to the putative father, then

d== dT = 0; d3 = 1; and
D
-= pq[1 - (1/2)CT - Cl (I - pq)
D

or D pq(l -p) (1 - pq), (3)
A

where p is the correlation between putative and "true" fathers.
Case. 3. If the putative and "true" fathers are unrelated, but the "true"

father is related to the mother, then
CI= CT=O; co 1; and

=pq[- (½/2)d- (/4)dT- dopq] + p2q'Id,. (4)
A

Case 4. Finally, in a population which is completely inbred, all individuals
have two genes identical by descent. Therefore

CT = CO = dT = do =0; c = di = 1; and
D - .
A

It is moot, of course, whether in this context nonpaternity has any biologic
significance.

Alleles with Dominance
We turn now to the case of two alleles with dominance. There are only two

recognizable phenotypes, and nonpaternity can be detected only when both the
putative father and the mother are of the recessive phenotype, say aa. The
general expression, arrived at in a manner analogous to the case of no domi-
nance, is

pq3[(¼1/4) CTdT + q(codo + (1/2½ CTdO + (½1/2) COdT)X, (5)

where p is the frequency of the gene A, and q( = 1 - p) is the frequency of
the gene a, and CT, CO, dT, and do are as previously defined. If the putative and
"true" fathers and the mother are unrelated, then
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cO = do = 1; CT =dT =O; and

D pq,[. (6)

The arguments here given for a single pair of autosomal alleles can be ex-
tended, of course, to multiple autosomal or to sex-linked alleles. To attempt to
do so exhaustively, in the former instance, is difficult. As Cotterman (1953)
has shown, there are no less than 52 regular three-allele systems, and, since in
general, no two have the same statistical properties each requires a separate
treatment. On the other hand, an extension of these arguments to sex-linked
loci is straightforward. First, we note that all nonpaternity of sons is cryptic;
their X-chromosomes are derived from their mothers. Second, and with respect
to daughters, to detect nonpatemity the "true" father must be genotypically un-
like the putative father. It follows, therefore, that the putative father and "true"
father must have no genes identical by descent. The mother and the "true" father
may, however, have one gene identical by descent. We find the general expres-
sions to be

D
D pq(l + q)(doq+(1/2)dT)

for the case of sex-linked alleles with dominance (e.g., the human Xga system),
and

D
D- -. pq[2do(I - pq) + (3/2)dT)A

for the case of sex-linked alleles without dominance. In the event, the "true"
father and mother are unrelated, these expressions reduce to

= pq2(1 + q)

and

A - 2pq(l - pq)

respectively.

THE ESTIMATION OF A AND P

To estimate A and p we proceed as follows: We assume that a series of mother-
child-putative father combinations are examined with respect to some trait, and
that on the basis of this examination the child, or if you will, the combination,
is assigned to one of a series of mutually exclusive categories. The latter recog-
nize the putative father's genotype (or phenotype) and whether the child's
genotype (or phenotype) is compatible with that of the putative father. Within
a random sample of N combinations, suppose ni mother-child-putative father
groups fall into category i (i = 1, 2 ...... k). It is assumed that the ni are
multinomially distributed with parameters N, A, and p.
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TABLE 2. THE DISTRIBUTION OF COMPATIBLE AND INCOMPATIBLE

CHILDREN BY GENOTYPE OF PUTATIVE FATHER

|~ CHILD

Compatible Incompatible

o C, K,
W AA

e Nfp2 -- p2q(1 - pq)] NAp2q(l pq) Np2

¢o C2 K2
e AB
> e 2pqN 0 2pqN

o C3 K,
E BB

e N(q2 -pq2(1 pq)J NApq2(l pq) Nq2

Nfl - pq(l pq)] NApq(l pq) N

a = observed number; e = expected number.

Alleles without Dominance
Consider, again, the case of a trait determined by a single pair of autosomal

alleles without dominance. There exist six mutually exclusive categories, namely,
putative father AA-child compatible (or incompatible); putative father AB-child
compatible (or incompatible); putative father BB-child compatible (or incom-
patible). As previously remarked, one of these cells, putative father AB-child
incompatible, is a null set. Table 2 gives expressions for observed and expected
numbers of children compatible and incompatible with the genotype of the
putative father. It should be noted that the two ways of classification, namely,
genotype of putative parent and compatibility of child, are not independent. The
partial sums in table 2 can not be multiplied, therefore, to obtain the expected
numbers in each cell. We take as the "best" estimates of x and p those values
which maximize the likelihood of the observed array. The likelihood function is

N!2L = C1!C2!C3!K1!K2!K3! [p2-Ap2q(l -pq)]C1[2pq]cfq12-xpq2( -

pq))C3[xp2q(l - pq)] 1[xpq-(1 - pq)}K;
where N - C1+ C2. + C3 + K1 + K., + K3. Differentiation of the logarithm
of L with respect to A and p leads to the expressions

8(log L) K, + K3l Cjq(l - pq) C3p( - pq) -
SA X I-k1-q(1 - pq) I - p( - pq)

8(Iog L) (2C1 + C2 + 2K1 + KO() (C., + 2C3 + K, + 2K3)
Sp * p q

(K1 + K )(P q) + C1(- 2pq + q2)
1-pq 1-Aq( -pq)

C3X (1 - 2pq + P2) _
1 --P(I - j4)0p
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These equations may be solved iteratively for x and p.
The variances of the estimates of x and p may be calculated according to the

equations

2 'pp 2 IAx
-g Ad "pUp-

where A is the determinant of the information matrix,

A IXI I2

and

lAp = IPX (8e; (e8ej
j ej\ 8p/\ 81k

In these expressions, ej is the expected number in the jth class.

A summary of the calculation of (Ase) and (8e) is presented in table 3.

The algebraic expressions for Ipp, lhp, and ILu. are quite cumbersome, and are,
therefore, not presented here. The variances.can, of course, be readily calculated

by substituting numerical values into the expressions for e, 8, and 8.Sp'
Alleles with Dominance

Consider, now, the case of a trait determined by a single pair of autosomal
alleles with dominance, say A and a. Again, as a convenience, we assume that
the mother, "true" father, and putative father are unrelated. The likelihood
function can be shown to be

L= N! (I - q2) (q2 pq)C2 (pq)K
C1dC2!KW 20 pBC

where C1 is the number of children compatible with the dominant phenotype,
C2 the number compatible with the recessive phenotype, and K the number
incompatible with the latter phenotype. When the logarithm of this function is
differentiated with respect to X and p, and the resulting equations set equal to
zero, we have

2Clq C2[2 + Xq4(q - 6p) K(q - 6p) 0
1- q2 q(l - pq4) pq =

K C2pq4 -0
X -xpq4
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These equations may be solved directly to obtain

q _~+K
N

KN3
(C2 + K)I[N -VN(C2 + K)]

The variances of these estimates can, as before, be obtained from the rela-
tionships

., 'p p __ lAX a
;)

2 P p

where, now,
Npql=^ NC1- Pq4)

Nq5 (q-4p)IP - kpq4
I N ( 4q2 + 2 + xq4(q- 6p) )2 +A94(q - 6p)2

Finally, consider the case of a trait determined by a single pair of sex-linked
alleles with dominance. For the situation in which the "true" and putative fathers
and the mother are unrelated, the likelihood function is

N! (q - - ]

C1!C2!K1!K2! (q Apqz)Cl(p Apq2)C2(Apq3)K(Xpq2)K2
where C1 and K1 are the numbers compatible and incompatible with the pheno-
type (aY), and C2 and K2 are the corresponding numbers for the phenotype
(AY). If the expressions which are obtained from differentiating log L with
respect to x and p are equated to zero, we have
-Clp(l + Xq2(q - 3p) ) (1 - xq2) + C2q(1 - xq(q - 2p) ) (1-
xpq2) +(K 1(q-3p) + K2 (q - 2p) ) (I - q2(l + p) +xspq4) = 0

A2Npq4 - Xq2( (K1 + K2) (1 + p)- (C1 + C2- Cq) ) +
(K1+ K2)=O

where N = C1 + C2 + K1 + K2. These equations may be solved for A and p
by iteration.

The variances of these estimates we obtain from

IxAA Npq2( _pq + +

Npq2[l -Aq2(3p - q)] + Nq2[ +Aq(2p - q)]
XP X _ xpq2 1 Aq2

Nq2(3p - q) - Nq(2p - q)
N{1 Xq2 (3p- q)]2 + N{1 + kq(2p -q)J2 +IPP q(1 - xpq2) + p(l - q2)
NXq(3p - q)2 + N(2p -q)2

P P
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MACCLUER AND SCHULL

APPLICATION OF THE METHOD TO A WORKED EXAMPLE

In table 4 are presented unpublished data of Gershowitz on the distribution
of M-N blood groups among Detroit Negroes. If p is the frequency of M, and
q = 1 - p is the frequency of N, then we take as preliminary estimates of p
and q the values obtained by merely counting the M and N genes among the
putative fathers, namely,

P (59 + 4 ) + (1/2) (129) 0.5247Pi ~~243 -054

q=- (/2) (129) + ( 50 + 1) 047
243 -045

The substitution of these values into
S log L 0

HA
leads to 0.1174 as the preliminary estimate of x, say x1. The estimates pi, q1,

and Al are used to compute numerical values for Slog = a), Slog L
( = b), IAA, I,, and Ipp A summary of these calculations is set out in table 4.
The equations

IxAAAi + IApApi = a

IxpAX1 + IppApi = b
are solved simultaneously for Ax1 and Ap1. Thus

405.0Ax1- 6.07Api = -0.02
-6.07Ax1 + 1971.Ap1 -5.7

from which
A -0.00009 and Apdi -0.0029.

New estimates of x, p, and q are formed according to the equations
A2 = Al + AXi
P2 = PI + Ap1
q2 1- P2

The procedure is repeated until sufficiently small values for Ax and Ap arc
obtained. It is worth noting that this procedure lends itself readily to program-
ming for a digital computer.

In the present instance, after the second iteration, we arrive at the values
A = 0.1173 IAx = 405.6
p = 0.5218 lAp = -5.41
q 0.4782 == 1971.

Finally, for the variances of A and p, we obtain

aA = 0.002466

2p = 0.000507
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Thus, the interval defined by the estimate A plus and minus twice its standard
error proves to be 0.01 8 to 0.2 17.

The "goodness of fit" of the model to the data is subject to test. If, in the
present instance, the observed and expected numbers are contrasted in the con-
ventional x2 manner, we obtain x2= 2.44, which for two degrees of freedom
is not significant at the 1 per cent level.

SUMMARY

A general expression is derived for the relationship which exists between the
over-all frequency of nonpaternity (A) and the frequency (D) which can be
detected on the basis of examinations of mother, child, and putative father with
respect to a particular trait. Certain special cases of particular interest are de-
duced from this more general frequency. A method is then presented for the
estimation of the over-all frequency of nonpaternity; the method which is given
also affords estimates of the frequencies of the genes associated with the trait
which provides the basis for the paternal exclusion.
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