
Estimation of Prevalence under Incomplete Selection*

I. BARRAI,1 M. P. MI,2 N. E. MORTON,2 AND N. YASUDA2

lIstituto di Genetica, Universitd di Pavia,
Italy.

'Genetics Department, University of Hawaii, Honolulu.

FOR A COMMON TRAIT it is feasible and clearly desirable to estimate prevalence
from a random sample of the general population (Lilienfeld, 1962). However,
this is prohibitively expensive for the rare traits with which a geneticist often
has to deal, since reliable estimates would require careful examination of a
large fraction of the population (e.g., more than 100,000 individuals for a
trait with a prevalence of 1/10,000). Such rare traits are ordinarily ascertained
through pedigrees which contain one or more probands (selected through
hospital records, death certificates, inquiries to physicians, examination of a
population sample, or other direct means of ascertainment) and in addition
may contain secondary cases not represented in these primary sources and
detected only through a family study of probands. For this incomplete selec-
tion, several indirect estimates of prevalence are available, depending on the
mode of inheritance and method of ascertainment.

TE FREQUENCY OF A RARE RECESSIVE GENE

In the general population, the inbreeding coefficient fi has frequency c1,
mean a = X c4ft, and variance a2 = X cfSi - a2. The incidence of homozygotes
at any stage preceding natural selection is q[q + (1 - q)a], where q is the
recessive gene frequency. Among probands, the mean value of the inbreeding
coefficient is

cifi (q + Pfi) qa + (1 - q) (of22 a2)
F = =

ci (q + Pfi) q 4fi (1 -q)a

Solving for q, we obtain

or2 + a2- Fa
q F(1-a) -a+rF2+a2 (1)

which reduces, when 0r2 + a2 - Fa < < F - a, to
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q et-_ - -a (2)
F-a

with a standard error estimated (neglecting errors in a and 2) by

aforF (q +a)2odq ~~F

e|F F (F- a)C2 O2

If there are sporadic, nonrecessive cases in addition to the recessive ones, it is
only necessary to exclude isolated cases in computing F. Incomplete pene-
trance and incomplete or irregular ascertainment are irrelevant if they are
independent of the inbreeding coefficient, but it is an essential assumption
that only one autosomal locus is involved and that the trait is recessive.

These results may be considered a generalization of Dahlbergs formula
(1948) to include consanguineous marriages other than first cousins and a
special case of Morton's formula (Chung, Robison, and Morton, 1959) when
there is only a single locus. Kimura (1958) gave an iterative maximum likeli-
hood solution which he considered "to be too complicated for practical use"
and suggested a simpler but inefficient formula.

In Dahlberg's case there are assumed to be only two values of f in the popu-
lation: f = 0 with frequency 1 - c and f = 1/16 with frequency c. Then a =
c/16 and ar = c (1 - c)/256. If k is the proportion of probands whose parents
are first cousins, F = k/16. Substituting in equation (1) we obtain Dahlberg's
formula

c(1-k)
q 16k - 15c - ck

while using equation (2) we obtain the Dahlberg approximation
c (1-k)

q
t

16 (k-c)

which works very well for k >> c.
Nei (1963) based his formula on the frequency of related parents instead

of the mean inbreeding coefficient. He gave

f (1-K)

f(1-K)+K-C
where f = a = the mean inbreeding coefficient in the population, K = the
proportion of probands whose parents are related, C = the proportion of
consanguineous marriages in the general population from which the parents
of probands are drawn.

This reduces to Dahlberg's formula when consanguinity other than first cous-
ins is neglected but is inefficient if there are other types of consanguinity, since
it does not distinguish between large and small values of the inbreeding
coefficient (for example, between f = 1/4 and f = 1/128). It is also highly
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sensitive to subjective factors in the ascertainment of remote consanguinity,
which different observers may report accurately or as "remote" or "no" con-
sanguinity. This makes little contribution to F or a but may contribute heavily
and erratically to the proportion of consanguinity.
The general treatment of the problem admits any distribution of con-

sanguinity, more than one locus, and an admixture of nonrecessive cases
(Chung, Robison, and Morton, 1959). We write

2 cifs (A + Bfi) Aa+B(U2 +a2)

F~ Zc(A 4Bf ) A 4-Ba
i

Morton (1960) gave the maximum likelihood solution. In the general case, we
must know the prevalence to estimate A and B, but for a single locus, A - q2
and B = q (1 - q), so we obtain equation (1).

Although our equations are less sensitive to subjective factors in recording
consanguinity than Nei's results, they are not fully efficient. Neglecting (with
Kimura, 1958) errors of estimate in the ci, the maximum likelihood solution
is not difficult. The likelihood of ml; probalds with fi is

L - |i|c"i q + (1 -q)fi /~q +( q)a

aid

d In L = ' f[ -fi 1
dq qq-F(I -q)a q±( -q)fi_

d In L) (q + ) 2 += K

T'i ese yield the iteration
q += q + U/K (3)

and the standard error of the final estimate is q, =V 1/K. The frequency
q2 + q (1 - q)a has a standard error of [a + 2q(1 - a)]ra.

It is of some incidental interest that Smith's counting method (Smith, 1957)
fails to converge in this problem.

Numerical Example

Kimura (1958) and Nei (1963) both used Furusho's data (1957) on deaf
mutism. Since 1959, a substantial body of evidence has shown that there are
sporadic and dominant cases and many loci controlling recessive deaf mutismn
(Chung, Robison, and Morton, 1959; Sank, 1963). For comparability we have
analyzed these data in Table 1 as if there were only a single recessive gene.
Equation (2) gives q .00988, compared with .00877 by Nei's formula and
.00761 by Kimura's. The exact maximum likelihood estimate is .00910, with a
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TABLE 1. ANALYSIS OF FURUSHO'S DATA (1957) ON DEAF-MurisM AS IF
THERE WERE ONLY A SINGLE LOCUS AND ALL CASES RECESSIVE

Parental relationship (a-fiI)/q1 (1 )!,j
(after Kimura) ' f q = .00910

Unrelated 0 1039 879 .504396
First cousins 1/16 77 484 -.815275
1% cousins 1/32 6 26 -.665408
Second cousins 1/64 13 68 -.448891
2a cousins 1/128 2 5 -.191344

Total 1137 1462

FORMULA 2
a = 77(1/16) + .... + 2(1/128)/1137 = .00459

77(1/16)2 + .... + 2(1/128)2-1137a2
472= -- = .000252

1136

F = (484(1/16) + .... + 5(1/128)1/1462 = .02200

2 484(1/16)2 +.... + 5(1/128)2-1462F2a- =.57365X 10-6
(1462)(1461)

.000252
q a5 -.004.59= .00988

.02200- .00459

(.000252)(.0007574) .000630

(.02200 -.00459)2

(.00910 + .00459)2(.0007574)
=.000563

.000252

FORMULA 3
Maximum likelihood solution

q=.00910 q + (1- q)a = .013648

U = 1879(.504396) +...I/.013648 = -.801

K = 1879(.504396)2 +, . . /(.013648M) = 3064028

q = .0091 -.801/3064028 = .00910

cq = +/1/K = .000571

standard error of .000571. Kimura's estimate, though farthest from the maxi-
mum likelihood solution, appears to have the smallest standard error, but this
is presumably deceptive since the formulae for the standard errors are valid
only in the limit for large samples and are very approximate in samples of the
size commonly observed. This may be illustrated by the standard error for
our equation (2), which is calculated to be .000630 by the formula
ok = [ao/(F - a)2]oF and .000563, using the maximum likelihood estimate of
q in the asymptotically equivalent expression oq = [(q + a)2/W2]o.,. This in-



BARRAI ET AL.

stability of the variance discourages comparison of the efficiency of the dif-
ferent methods, which may be expected to have high efficiency and to give
almost identical results when consanguinity other than first cousins is nearly
negligible. However, when remote consanguinity is relatively important, the
maximum likelihood equation (3) should be used.
The frequency in a randomly mating population is estimated as q2 = 8.3 X

10-5, which is less than half the frequency of recessive deaf mutism. For proof
that the discrepancy is due to multiple loci, see Chung, Robison, and Morton
(1959) and Sank (1963).

PREVALENCE UNDER INCOMPLETE SELECTION, WITH ISOLATED CASES INCLUDED
Prevalence (n) will be defined as the number of cases of a trait existing in

a given area at a given time. From an estimate of the prevalence and the
population size N we can determine the frequency at birth of individuals who
will develop the trait and from this, if the genetic basis is simple, proceed to
a calculation of gene frequency and mutation rate.
Assume that the method of sampling is to collect a fixed number A of pro-

bands and then study their relatives. Since the population is finite, the chance
of detecting a family with r affected is

(A)(n-A) A

1_)\0/\ J= 1 n-i ±

If r << n, the effect of sampling without replacement is negligible and the
chance of detecting the family approaches 1 - (1 - yr )r, where 7r = A/n is
the ascertainment probability. Since A and n are both fixed numbers, the error
of estimate for n = Air is

=n= Au1r.2 (4)
where r is estimated by segregation analysis (Morton, 1959, 1962). This error
does not include the effects of drift on gene frequencies nor of accidents of
segregation and fertility on genotype frequencies.

Numerical Example
Morton and Chung (1959) reported 26 living probands with limb-girdle

muscular dystrophy among 3,700,000 residents in Wisconsin. They estimated
the ascertainment probability as .354 with standard error .0534. Therefore
the number of cases of limb-girdle muscular dystrophy living in Wisconsin
was estimated to be

n = A/r = 26/.354 = 73.4
with standard error

°n = Aor/T2 = 26(.0534)/(.354)2 = 11.1
The frequency is n/N = 73.4/3700000 = 2.0 x 10-5. From the age distribution
of the general population and the ages of onset and death of affected persons,
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they calculated that only .304 of cases born had expressed the trait and were.
still living, so that the incidence at birth of persons who will develop limb-
girdle muscular dystrophy is

I = n/.304N = 6.5 x 10-5
with standard error

aI = an/.304N = 1.0 x 10-'

PREVALENCE UNDER INCOMPLETE SELECTION, WITH EXCLUSION OF ISOLATED CASES

If the trait is a mixture of sporadic and high-risk cases, data on the latter
component may be collected by omitting isolated cases. The resulting sample
of multiplex families (i.e., with two or more affected, r > 1) still permits
estimation of prevalence. If A' is the number of probands in multiplex
families, the number of affected in multiplex families in the population is esti-
mated by A0/ir. But to estimate prevalence we need to know 8, the ratio of
probands in multiplex families to all probands. The probability that a proband

should have s - 1 sibs is s4(s)!/ sf(s), where f(s) is the frequency of
8-0

families of size s capable of producing trait bearers. The probability that all
s -1 sibs will be unaffected is qe-1, where q is the segregation frequency of
unaffected children. The mean of this probability for all sibship sizes is
>4(s)q8~'/js(s), and the ratio of probands in multiplex families to all
probands is the complement of this, or

0 = 1 - Isf(s)q 8-./ 2 sf(s)8=1 8-1
Then the prevalence is

n = A*/ir6
We may estimate 0 either empirically or on the assumption that f(s) has a
Poisson, geometric, negative binomial, or other distribution.
The empirical method assumes that f(s) can be represented with sufficient

accuracy by a random sample of sibship sizes from the general population.
This assumption is valid only for completed families if onset of the trait is
delayed or if it causes premature mortality, for then age and consequently in-
complete sibship size will be different from the general population. When the
empirical method is applicable, the error of estimate of the prevalence n from
v control families is

an Ad 2 2(dn2 2 2
'

(
Zsf(s)q2'-2 2

j_ /I 8)

where the first term in brackets is the expectation of (ql-)1)2
Kiser and Whelpton (1944) found some data on completed family size of
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cohorts to give a good fit to a Poisson distribution. We are concerned only
with fertile families, since childless families do not contribute to 0. This trun-
cated Poisson distribution is

f(slIs > = Mm - s = 1, 2.

s!(l- "') m > 0
and so the frequency of probands in multiplex families is

0
2; sm~q'Its!= 1 - s
Z sMi /s!

- 1-e
where p = 1 - q is the segregation frequency of affected children.
Under incomplete selection, with exclusion of isolated cases, the probability

that a family of size s have at least one proband is 1 - (1 - pr)s -spirq8-,
and the distribution of sibship size under this condition when the distribution
in the general population is a truncated Poisson is

It~~~(sr

-

)_ t(1-SPr) sprq
-

lm /s!f(s~r>1) = -co
1 -1-(1 -pr)-8 -sprq8-lm 8/s!

8=1

s!eI 1-cmpT -mpre7"t
The standard error of the prevalence is

an= VOK-'O'
where K-' is the inverse of the informational K matrix for p, vr, and m, and
a is the vector of derivatives,

On an

m n I

\P Or am 1-e Xr 1-e")
Elements for parameters specified by hypothesis are omitted from a and K.

Accidents (Greenwood and Yule, 1920), abortions (James, 1963), and
family size (Kojima and Kelleher, 1962) are often fitted by a negative binomial
distribution, which Fisher (1941) derived by Poisson trials from a population
with a gamma distribution of risks. The truncated negative binomial is

(ZS)m8(1-m)z-s s = 1, 2....... o

1-(1m Z) m,z < 0
This gives a truncated geometric distribution when z = -1. It approaches a
logarithmic distribution when z approaches 0 and a truncated Poisson when
z approaches oo, m approaches 0, and mz remains constant (Kendall and
Stuart, 1958). The frequency of probands in multiplex families is
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T's(1)M'Ia-m)s-.Iqs-l
o - 1 - S________ _ _ )____

= 1 - (1-mp)21

Under incomplete selection with exclusion of isolated cases, the distribution
becomes

f(slr > 1) -(2)m'(1-m)'A1{-(1-pry'-sprq,~'I
81

(D)m'(1 -m)'i1- (1 -pr)-sprq''l
1- (1 -mpr) -mprz(1 -nMp)$'

The standard error of the prevalence is

a, = j8K-'8 /

where K-1 is the inverse matrix for p, ir, im, and z, and a is the vector of
derivatives,

(-)m(-mp)''2 n n(1-z)p(1-mp)' -nln(1-mp)a - (1 ,__ _ _ __ _ _ _ ,, __ _ __ _ _

1- (I-mp) r 1-(1-mp)1 1-(1-mp)1'

Elements for parameters specified by hypothesis are omitted from a and K.
For an example of this analysis, see Dewey et al. (1965).

TH INFORMATION GAINED ABOUT SEGREGATION PARAMETERS WHEN
A DISTRIBUTION OF FAMILY SICZE IS ASSUMED

Gittelsohn (1960) introduced the concept of a prior distribution of family
size into segregation analysis. Our first response was unsympathetic. "Attempts
have been made to describe complete family size by a modified geometric
or Poisson distribution, but in populations with mixtures of contraceptive and
noncontraceptive groups and with biological variations in fertility there is
no reliable approximation to the distribution of family size, especially incom-
plete size. Geneticists have preferred to avoid the unknown prior distribution
of family size in favor of distributions conditional on fixed size, especially as a
distribution of segregants within families is f(s)P(ra;s)41f(s)P(ra;s). Under
and equivocal information about segregation" (Morton, 1962). However, a
little reflection has shown that this reaction was premature. The introduction
of a prior distribution of family size is useful, as we have seen, to estimate
prevalence when isolated cases are excluded from the sample. We turn now
to the effects of an assumed family size distribution on segregation analysis.
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With any mode of selection of a probands among r affected individuals, the
distribution of segregants within families is f(s) P(r,a;s)/lf(s) P(ra;s). Under
complete selection, the denominator equals 1 and therefore estimation of
fertility parameters provides no information about the segregation parameters.
However, under incomplete selection, some of the information about segrega-
tion can be extracted only when f( s) is given, as in the last section.
The conditional information about a parameter Xi is 1/K", where Kii is the

corresponding diagonal element in the inverse of the K submatrix which in-
cludes that parameter and all others estimated from the sample. Let 1o denote
this information when fertility parameters m and z are not estimated and I,,,
1m be the information when m or both m and z are estimated simultaneously.
Then Lo/'r and Io/hl are the efficiencies for Ai of methods conditional on fixed
sibship size, relative to simultaneous estimation of the fertility parameters.
To study the information gained by simultaneous estimation, we must con-

sider the probability that a family have at least one proband when isolated
cases are included. Morton (1959) showed that this is proportional to
xsp~r+ ( 1-x) 1- ( 1-pe8 A, where x is the probability that a case be sporadic
(i.e., an isolated case due to mutation, phenocopy, or other nonrecurrent
mechanism). Therefore the distribution of sibship size when the distribution
in the general population is a truncated Poisson is

f(slr > 0) =m8 [XSP7r + (1-X) '1 - (1p-r)iI
Zm8tXSp7r + (1-x) [1-(1_pw)8I /s!

8=1

m*[XSp7r + (l-X) 1 -p7r)8II
[xmp7r + (l-x) (1e-l') Is! et

For the negative binomial,

f(sjr > 0) (s)m8(1-m)z-8[xsp7r + (l-x) 1 (1-p7r)}]
fsm( (SIZ-8 [X>pxr+ (1-x) {1-(1-pr)i) ]

a=1

(S)m8(1 Mm)Z [xspir + (1-x) 1(17r)S}
xmzpir + (1-x) 1 (-mpT)z}

To determine whether the information gained by assumption of a family
size distribution justifies the inherent approximation, we have examined six
bodies of data (Table 2). Two of these are ABO blood group segregations
selected through the parents, with no sporadic cases. They are treated here
under truncate selection, with nonsegregating families excluded. A third
example of truncate selection is provided by deaf-mutism from normal par-
ents, with a substantial frequency of sporadic cases. The remaining studies
(of retinoblastoma, Duchenne muscular dystrophy, and spherocytosis) were
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carried out under multiple selection with ascertainment probabilities ranging
from .097 to .690 and the proportions of spCradic cases from .266 to .915. In
these studies, some parameters were specified by genetic hypothesis, others
had to be estimated empirically. Thus the material provides a variety of
conditions under which the consequences of assuming a family size distribu-
tion can be examined.
We first fitted the geometric and Poisson distributions, the fertility parameter

m being iterated with the relevant segregation parameters by the BINEG pro-
gram for the IBM 7040 computer (see Appendix). Goodness of fit of the
proposed distribution was tested by the likelihood ratio criterion,

X 2 = 2 zoi In (oi/ei), sig, O > 0

where oi is the observed number of families of size si, the expected number is
es, and the degrees of freedom are taken as one less than the maximum ob-
served family size. The Poisson distribution gave a total x2 of 183.82, df = 52,
P < .001, and the fit was significantly poor in all six samples. The geometric
distribution gave X2 = 196.20, df = 52, P < .001, and the fit was significantly
poor in five samples.
A further conclusion from these tests was that the information gained about

segregation parameters by fitting a family size distribution is negligible.
Averaging I,, for the Poisson and geometric distribution (which gave nearly
identical results), the total amounts of information in the whole material are
as follows:

Io I???. i0/ij91r
p, incomplete selection 7403 7430 .996
x, incomplete selection 5794 5807 .998
p, multiplex families 3917 3936 .995

Thus the sole advantage of fitting a family size distribution is that it permits
estimation of prevalence when isolated cases are excluded. The reliability of
this estimate depends on the goodness of fit of the fertility distribution. Since
the Poisson and geometric are generally unsatisfactory, we turn now to the
negative binomial.

Application of this model was at first unsatisfactory because of the tendency
of simultaneous estimates of m and z to diverge, often overshooting into the
proscribed range of positive numbers. Divergence was decelerated and over-
shooting stopped by limiting the absolute value of increments to .7 of the
estimates. While this braking rule slows divergence, it did not produce con-
vergence in two of 12 analyses (multiplex families of deaf-mutism and retino-
blastoma). We therefore introduced regula falsi interpolation. Given initial
values for m and z, the scores have one of four patterns: Ur, Uz > 0 (+ +);
Ur, Uz < 0 (--); Ur > 0, Uz < 0 ( +-); cr Ur < 0, Uz > 0 (-+).
Ordinary iteration with the braking rule is continued until a complementary
pattern is reached, for example + - following an initial pattern of -+.

231l
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Let the observation preceding the complement which gives the smallest
x2 be (mi, z(,, Urnto Use) and the complementary set be (ml, z1,
Url Uz1). Then interpolation gives improved estimates

(ml-MO)|UH184
M2= m +

IUnto n+IJr Il
(z1-zO) IUzoI

Z2 =ZO +
UO+ ZIIUzof+ IUziI

from which scores U,,.,, U., are calculated. If convergence is not obtained in
20 iterations, the computer takes a new trial value from the six estimates with
the smallest values of x2. These are sufficient to determine a bivariate quad-
ratic,

x2= A + Bm + Cz + Dm-+ Ez2+ Fm.
which yields the pair of simultaneous equations

2

ax= B + 2Dm+ Fz O

2

xC= C+2Ez+Fm =

whose root is

m = (CF - 2BE)/(4DE - F2)
z = (BF-2CD)/(4DE-F )

By these methods we verified that the m, z matrix in the neighborhood of
of root is singular for multiplex families of deaf-mutism and retinoblastoma,
the two problem cases, in both of which the Poisson distribution was accepted
because it gave a smaller x2 than any of the other methods. We have adopted
the practice, when iteration fails to converge, of taking as final the estimates
(obtained by regula falsi or quadratic interpolation or any other method)
which give the smallest x2.
Having removed the practical difficulties in fitting the negative binomial,

we obtained the analyses shown in Table 2. The negative binomial fits
splendidly in four of the six samples, but the total x2 is 80.51 with 46 degrees
of freedom (P < .01). Since the Poisson and geometric distributions are
special cases of the negative binomial, the superiority of the latter is tested
with six degrees of freedom by the difference in x2, which is 103.31 for the
Poisson and 115.69 for the geometric distribution. This indicates a highly
significant superiority of the negative binomial over the Poisson and geometric
distributions.
The two samples for which the negative binomial gives a significantly poor

fit are spherocytosis and deaf-mutism. In the first case, pooling the largest
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family sizes (to make the expected frequency exceed 5) reduces x2 to 5.42
with 3 df, suggesting that the problem is with the reliability of the x2 test
in small samples. For deaf-mutism, the observed frequencies exceed their
negative binomial expectations for family sizes 1 and 2 and 6 to 8, agree well
for families of 9 or more, but are considerably below expectation for family
size 3 to 5. This alternation of deviations suggests a mixture of two distribu-
tions, and in fact the sample represents two generations, with about equal
numbers of deaf-mutes above and below age 30. Goodness of fit of the nega-
tive binomial should generally be better in data stratified by generation. The
multiplex estimates relate only to high-risk cases, who make up a proportion
1 - x of the total prevalence, including sporadic cases. For comparability with
the estimates from incomplete selection, in Table 2 we have divided the
multiplex estimates and their standard errors by 1 - x.

In all six samples, the prevalence estimated from multiplex families on the
assumption of a negative binomial distribution agrees remarkably well with
the prevalence determined from incomplete selection without assuming a
family size distribution. It would appear that samples of multiplex families
give as precise information about the prevalence of high-risk cases as about
their segregation frequency (Morton, 1959, 1962) and that this method of
sampling should be more widely used by geneticists to study the etiology of
high-risk cases when sporadics are frequent.

SUMMARY

Methods of estimating prevalence are derived for the case of a rare
recessive gene and for a trait under incomplete selection, with isolated cases
included or not. In the latter event, with the sample restricted to multiplex
families, the prevalence estimate requires fitting of a family size distribution.
The Poisson and geometric distributions are found to give a poor fit to six
bodies of genetic data. However, the negative binomial fits much better and
gives a reliable estimate of prevalence. The simultaneous estimation of fertility
parameters contributes virtually nothing to information about segregation
parameters. These methods, besides being useful to estimate prevalence in
the general case of incomplete selection, make it possible to extract full gen-
etic information from samples of multiplex families and therefore may profit-
ably be applied to traits with a high incidence of sporadics whenever it is
desired to concentrate on high-risk mechanisms.
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APPENDIX

Models for family size distribution under incomplete selection.*
s = family size (i.e. number of examined children).
r = number of affected children.
a = number of children who are probands.

These models are included in BINEG, a Fortran IV program for the IBM 7040. For a
general treatment of segregation analysis, see Morton (1959, 1962, 1964).
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p = the segregation frequency (i.e. the probability of affection in a
high-risk family), q = 1-I).

x = the proportion of cases in the population that are sporadic due to
mutation, phenocopies, technical errors, extramarital children, rare
instances of heterozygous expression of a recessive gene, chromo-
somal nondisjunction, polygenic complexes, etc.

= the ascertainment probability (i.e. the probability that a case in the
population be a proband).

m = the base parameter in a Poisson or negative binomial distribution
of family size.

z = the exponential parameter in a negative binomial distribution of
family size.

ul = the maximum likelihood score with respect to the i"' parameter.
Kij = Yuiuj = the i, j element of the informational K matrix.

Incomplete selection, Poisson distribution (with isolated cases included).

P(slr > o;Pxrm) = m [xspT + l-x)_1-(1-Pr)SI ]
[xmpir + (1-x) (1-e-mPw) ]s! em

= Sir [x + (1-x) (1-Pir)8 ] mar [x + (1-x)eCmP]
XSPir + (l-X) [1-(I-P)8] xmpr + (1-x) [1 - Cmp'r

= [spIT - 1 + (1-pr)8] __ (mpir- ± e-mPw)m

XSPir + (1-X) [1-(1-pr)18 xmpir + (1-x) [1-eme'

Ur = sp[x + (1-x) (1-Pr).-'] _ {mp[x + (1-x)e-mPr;}
XSpir + (1-X) [1-(1-Pr)8] xmpir + (1-x) [1-e-t"T]

m= s-_ m xirp + (1-x) Pre m"PT
m xmpr + (1-x) [1-e-P'r]

Incomplete selection, negative binomial distribution (with isolated cases
included).

P(sjr > o; Pox ~m~z) = (s)m8(1-m)Z-4ISXPT + (1-X) [1-(1i-Pr)'
XMZPT + (1-x) [1-(1-MPTr)2]

== STr[X + (1-X) (_-pTr)8-] _ m1Z7[X + (1-X)_(1-mpw)zl] -
XSPT + (1-X) [1-(1-pir)8] xmzpT + (l-x) 1(I-mp7r)Z]

= spir- 1 + (1-Pir) mzpr- 1 + (lmPr)Z
XSP7 + (1-X) [1-(1-pir)8J xmzpZr + (1-x) [1-(1-mpir)Z

Ur = sp[x + (1-x) (1-pTr)81] _ mzp[x + (1-x) (l-mPTr)Zl]
XSPr + (1-X) [1-(1_-Pr)8] xmzpr + (1-x) [1-(1-mpTr)z]
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um Zs zpr[x + (1-x) (1-mpw) ]L
m 1-m xMzpr4+ (1-x) [1-(I-mpir) ]

8-1

u = _1 _ xmpr -1-x) (1-mpr)z In (1-mpr) + In (1-m)
i=O z-i xMzpi + (1-x) [1-(1-mpTr)]

Multiplex families, Poisson distribution (with isolated cases excluded).

P (slr > 1; p,wr,M) =-n[1-(I-pir)-spirq _]
s!em' [1 -enh"P7 Prne-mP]

= Sr[(1-pir81-(I-sp)q8-J-_mr[e PT-(1-mp)em]
1 -(1p-_r)8-Spw7q -I1 -n-Pr-mpw7re-m

=sp [ (I -ptro_-'- ]8- _p (emp' e_MP

Urm -= - -
Im I pr 8-sp-rq8- -mpe-mPr-me"'

rnI ~MP'r -rnpire-MP
Multiplex families, negative binomial distribution (with isolated cases ex-
cluded).

P(sIr > 1; p,7r,M) =(-st8 (1=m-) [1-(1-pr)-sp rq-
I -(-mpr)mprz(1 -mp)-''

= [(1-pir)-I1-2(I-Sp)] Mz~r[(1lslpir)Z-l(1I-mp)__Imp*)I
1- (1 -p7r)-8sp 7rq -1-rn-mpb))Zrnz(1-rmp)z'-MP)Z-

Sp [(1 _)8-1_q8-1 ] MpZ [( f_t/)pZ)'-l _ M~-
U~r = -

1-1PT)8-Sprq8 1 -1M67) Z-MPxrZ(1-MP) 2-1

=zS2-S prZ[(1-MpT)z- (1 mp)z2 (1-mpz)]
m 1-mr 1-(1-npr) -mpTz(I-Mp)z 1

8-1

u = -L. n (I-rn) 4-
Z-1

i=O

[(1-mpTr) In (1-mpir) + mPr(1-mP)r-'1II zIn (1-nmp)J
1-(1-Mpr)'-Mwz(1 -MP),


