Supplemental data

Supplemental Figure Legends

Supplemental Figure 1. Analysis of deletion of AMPK α 2 in POMC and AgRP and **POMC** α **2KO** and neurons in control AgRPα2KO mice. **(A)** Immunofluorescence analysis for $AMPK\alpha 2$ (green) and POMC (red) expression in the hypothalami of control and POMC α 2KO mice. Colocalisation of typical nuclear staining of AMPK α 2 is seen in POMC neurons in control section (indicated by white arrows) and no colocalization is seen in *POMC* α 2KO section. (B) Immunofluorescence analysis for AMPK α 2 (red) and AgRPCreYFP (green) expression in the hypothalami of control and $AgRP\alpha 2KOYFP$ mice. Colocalisation of typical nuclear staining of AMPK $\alpha 2$ is seen in AgRP neurons in control section (indicated by white arrows) and no colocalization is seen in AgRP α 2KOYFP section. Confocal images of representative ARC fields are shown and are typical of results from 3 mice of each genotype. Scale bars: 10 µm. (C) Quantification of deletion of AMPK α 2 in POMC α 2KO and AgRP α 2KO neurons. AMPK α 2 staining was assessed in at least 50 POMC or AgRP neurons from 3 mice of each genotype. Results are expressed as percentage of cells in which AMPK α 2 expression was absent and are means \pm SEM.

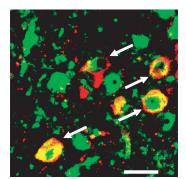
Supplemental Figure 2. Unaltered neuropeptide release in hypothalamic explants from *POMC* α 2*KO* and *AgRP* α 2*KO* mice and normal anterior pituitary hormone gene expression in *POMC* α 2*KO* mice. (A) α -MSH release in control and *POMC* α 2*KO* hypothalamic explants (n = 15 per genotype). (B) AgRP and (C) NPY release in control and *AgRP* α 2*KO* hypothalamic explants (n = 8 per genotype). (D) Pre-pro-opiomelanocortin (POMC), growth hormone (GH) and thyroid stimulating hormone beta subunit (TSH β) mRNA expression in control and *POMC* α 2*KO* pituitaries assessed by quantitative RT-PCR, n = 6-10. Probes for GAPDH were used to adjust for total RNA content. All values are mean \pm SEM.

Supplemental Figure 3. Glucose homeostasis in *POMC* α 2KO and *AgRP* α 2KO mice. (A) Glucose tolerance in 12-week old male control and *POMC* α 2KO mice on chow diet, n = 16. (B) Glucose tolerance in male control and *POMC* α 2KO mice after 18 week exposure to HFD, n = 11-15. (C) Glucose tolerance in 12-week old male control and *AgRP* α 2KO mice, n = 5-7. (D) Insulin tolerance in 12-week old male control and *AgRP* α 2KO mice, n = 12-20. All values are mean ± SEM. * *P* < 0.05.

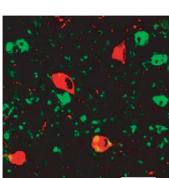
Supplemental Figure 4. AgRP neuronal anatomy is normal in $AgRP\alpha 2KO$ mice. (A) In situ hybridization for AgRP mRNA in ARC of control and $AgRP\alpha 2KO$ mice. Representative sections from 3 mice for each genotype are shown. (B) Immunoreactivity for AgRP in ARC of control and $AgRP\alpha 2KO$ mice. Representative sections from 3 mice for each genotype are presented. Representative sections from 3 mice for each genotype are presented. Population size and distribution (C and D) for AgRP neurons within the ARC in control and $AgRP\alpha 2KO$ mice (n = 2-3). AgRP somatic area (E) and diameter (F) in control and $AgRP\alpha 2KO$ mice. A minimum of 100 neurons were analysed per group. 3V, 3rd ventricle. Scale bars, 50 µm. All values are mean \pm SEM.

parameters in AMPK α 2 mutant mice.						
	Control	ΡΟΜCα2ΚΟ	α1HetPOMCα2KO	Control	AgRPα2KO	
Nose/anus length (cm)	9.4 ± 0.1	9.4 ± 0.1	9.6 ± 0.1	9.3 ± 0.2	9.1 ± 0.3	
	(8)	(8)	(8)	(7)	(8)	
Bone mineral content	0.051 ±	0.054 ±	0.053 ±	ND	ND	
(g/cm ²)	0.001 (8)	0.001 (8)	0.001 (8)			
Randomly fed blood	8.1 ± 0.2	8.2 ± 0.2	8.1 ± 0.4	6.8 ± 0.2	6.8 ± 0.2	
glucose (mmol/l)	(27)	(25)	(12)	(15)	(14)	
Fasted blood glucose	5.7 ± 0.3	5.8 ± 0.5	5.3 ± 0.4	4.7 ± 0.2	4.3 ± 0.2	
(mmol/l)	(24)	(23)	(18)	(16)	(17)	
Insulin (ng/ml)	0.149 ±	0.173 ±	ND	0.155 ±	0.186 ±	
	0.015 (7)	0.052 (7)		0.019 (7)	0.019 (7)	
Adiponectin (µg/ml)	4.8 ± 0.6	4.5 ± 0.6	ND	4.0 ± 0.5	3.1 ± 0.3	
	(6)	(7)		(7)	(7)	
Corticosterone (ng/ml)	11.1 ± 1.9	9.2 ± 1.9	ND	ND	ND	
	(6)	(7)				
T4 (μg/dl)	6.1 ± 0.3	6.3 ± 0.7	ND	3.4 ± 0.2	3.6 ± 0.3	
	(6)	(7)		(6)	(7)	
	. /	. /		. /	. /	

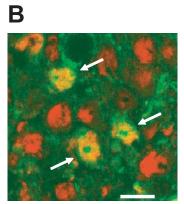
Supplemental Table 1. Body length, bone mineral content and biochemical parameters in $AMPK\alpha 2$ mutant mice.

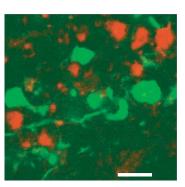

Data are expressed as mean \pm SEM. The number of mice per group is shown in parenthesis. ND, not determined.

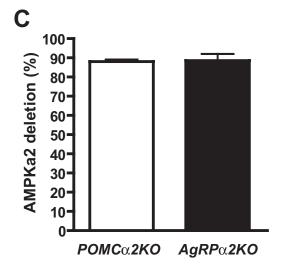
Supplemental Table 2. The biophysical properties of ARC AgRP-expressing neurons in control and $AgRP\alpha 2KO$ mice.

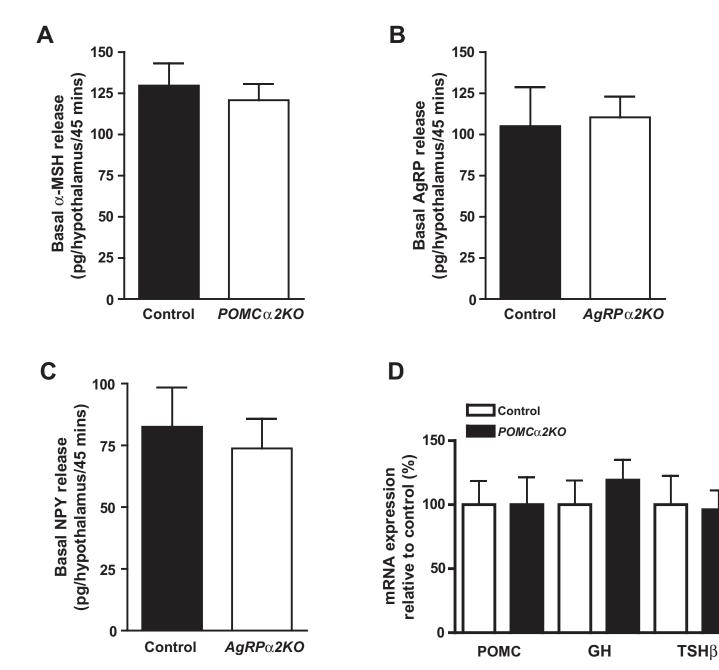

	Control	AgRPa2KO
Membrane potential (mV)	-46 ± 1 (26)	-51 ± 1 (19)*
Input resistance (G Ω)	2.5 ± 0.3 (23)	2.8 ± 0.3 (17)
Spike firing frequency (Hz)	2.1 ± 0.4 (26)	2.8 ± 0.5 (19)

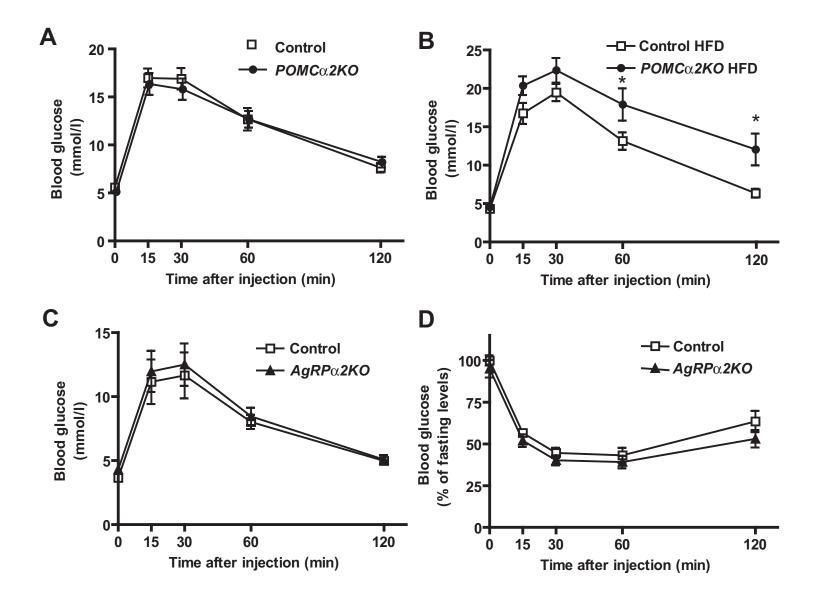
Data are expressed as mean \pm SEM. The number of neurons per group is shown in parenthesis. * P < 0.05.

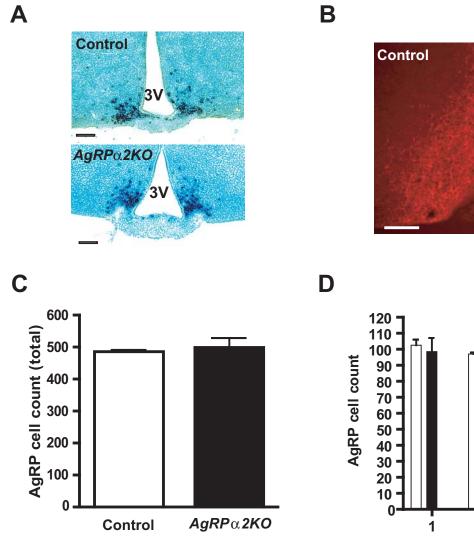

Α


Control

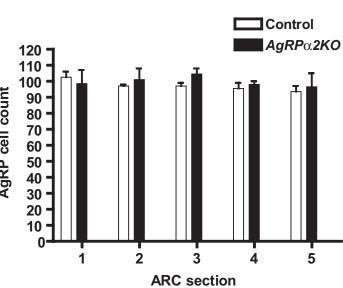

ΡΟΜϹα2ΚΟ

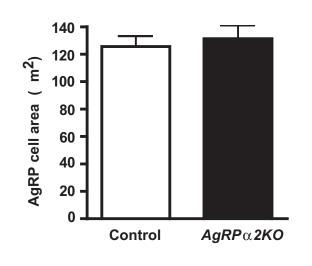


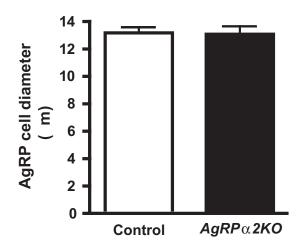

Control



AgRPα2KO




F


AgRPα2KO 3V

3V

Ε

