
Appendix

Existence and Uniqueness of Nash Equilibrium

Here we show that the vaccination game formulated in the main text always has a

unique Nash equilibrium pind ∈ [0, 1). We assumed in the main text that all delayers

are either vaccinated or infected in the case of an outbreak, i.e., φv(p) = 1− φs(p),

so we can rearrange Eq. 3 to obtain

Edel(p) = −r [φs(p)(ds − dv) + dv] . [11]

Therefore, because φs(p) strictly decreases with p and dv < ds, Edel(p) strictly in-

creases with p.

First consider the case where Evac > Edel(0). We identify a candidate Nash

equilibrium as the mixed strategy pind corresponding to coverage levels where the

payoff from playing vaccinator equals the payoff for playing delayer. Hence pind is

given by the solution of the equation

Evac =Edel(pind) [12]

i.e., − dv =− r [φs(pind)(ds − dv) + dv] . [13]

Because Edel(p) is a strictly increasing function and Evac > Edel(0), there is a unique

value of pind that satisfies Eq. 12 (or, equivalently, Eq. 13).

To show this is a Nash equilibrium, suppose a fraction ε(0 < ε < 1) of the popu-

lation adopts the alternative mixed strategy of playing vaccinator with probability

palt ∈ [0, 1)\{pind}. For pind to be a Nash equilibrium, the payoff E(palt) to individ-

uals playing palt must be no greater than the payoff E(pind) to individuals playing

pind, i.e., E(palt) ≤ E(pind).

If a fraction ε of individuals play palt, then the overall proportion ptot of the

population choosing preemptive vaccination is

ptot = (1− ε)pind + εpalt . [14]
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Under such conditions the payoff for playing pind is

E(pind) = pindEvac + (1− pind)Edel(ptot) [15]

while the payoff for playing palt is

E(palt) = paltEvac + (1− palt)Edel(ptot) . [16]

Hence we must show that E(palt) ≤ E(pind) for all palt 6= pind, i.e.,

E(palt) ≤ E(pind)

⇐⇒ paltEvac(ptot) + (1− palt)Edel(ptot) ≤ pindEvac(ptot) + (1− pind)Edel(ptot)

⇐⇒ palt(Evac − Edel(ptot)) ≤ pind(Evac − Edel(ptot)) [17]

The following steps show that E(palt) < E(pind) when palt < pind:

palt < pind ⇐⇒ ptot < pind Eq. 14

⇐⇒ φs(ptot) > φs(pind) because φs(p) is decreasing

⇐⇒ Edel(ptot) < Edel(pind) = Evac Eqs. 11 and 12

⇐⇒ Evac − Edel(ptot) > 0

⇐⇒ palt(Evac − Edel(ptot)) < pind(Evac − Edel(ptot)) because palt < pind

⇐⇒ E(palt) < E(pind) Eq. 17

Hence the payoff to strategy pind is higher than the payoff to any alternative strategy

palt < pind. The same approach shows that E(palt) < E(pind) when palt > pind.

Therefore the mixed strategy pind identified by Eq. 13 is, in fact, a strict Nash

equilibrium. It also follows immediately that pind is a unique Nash equilibrium.

Any alternative strategy palt ∈ [0, 1)\{pind} cannot be a Nash equilibrium, because

the arguments discussed above show that E(pind) > E(palt) for all values of ε, i.e.,

any proportion of individuals playing pind get a higher payoff when the rest of the

population plays any other strategy.
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In the second case, where Evac ≤ Edel(0), there is no mixed strategy that satisfies

Eq. 13 due to the fact that Edel(p) is strictly increasing. However, it can be shown

in a similar way that the pure delayer strategy pind = 0 is the unique, strict Nash

equilibrium.

Impact of Inclusion of Residual Immunity

We repeated our analysis with the inclusion of residual immunity. Approximately

15% of the current U.S. population was immunized during the preeradication era (1),

but exactly how much immunity remains from this era is unknown. To determine

the potential impact of residual immunity, we assumed that a proportion pinit of

the population had such residual immunity. Consequently pgr > pinit and pind > pinit

(we assumed that individuals with residual immunity do not presently seek and are

not given the option of immunization). We repeated our Monte Carlo sensitivity

analysis for the same intervals as in Table 1, additionally using the interval [0, 0.15]

for possible values of pinit.

The inclusion of residual immunity has little effect on the difference ∆p between

the group optimum and individual equilibrium for most parameter values (Fig. 3).

The same is true for the relative increase in mortality rate, ∆C/C. The average

value of the difference between the group optimum and individual equilibrium ∆p

is 0.16, where the average values of pind and pgr are 0.49 and 0.65, respectively. All

these values are similar to the results for pinit = 0.

Impact of Inclusion of Vaccine-Induced Morbidity in
Cost Function

It is reasonable to suppose that the risk of vaccine-induced morbidity such as vaccinia

may also sway choice of strategy. Incorporation of vaccine-induced morbidity into

the analysis necessitates the use of a weighting factor of the cost of vaccine-induced
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morbidity relative to death. This allows both outcomes to be incorporated into the

cost analysis for both the payoffs (for determining the individual equilibrium) and

the cost function C(p) (for determining the group optimum).

We included the risk of vaccine-induced morbidity in our model by replacing the

term dv everywhere by the term dv+ wc, where c = 0.00005 is the risk of experiencing

vaccine-induced morbidity (2) and w is the weighting factor (which was varied over

the range [0, 0.2] in the sensitivity analysis).

Although the group optimum and individual equilibrium are both lower when

vaccine-induced morbidity is included, the average difference is essentially unchanged

(Fig. 4). The average value of ∆p is 0.19, where the average values of pind and pgr are

0.17 and 0.36, respectively. As in the case where vaccine-induced morbidity is ig-

nored, ∆C/C is typically substantial (but note that this quantity is now interpreted

in terms of a generalized “health cost,” not strictly in terms of expected mortality).

Sensitivity Analysis for Postattack Vaccination Rate v

and Response Time tres

We also carried out a sensitivity analysis with respect to the two parameters under

most direct control of public health authorities, namely, the postattack vaccination

rate v and the response time tres. We explored the dependence of ∆p and ∆C/C on

these two parameters, where all other parameters were fixed at the values of Table 1

(third column). For most regions of this two-dimensional parameter space (Fig. 5),

the values of ∆p and ∆C/C are still substantial and often very high. Only for a

very high postattack vaccination rate v and short response time tres do the individual

equilibrium and group optimum start to converge.
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