Appendix I: Assigning Significance to Global Difference
Recall that our goal is to solve the following maximizatialplem:
mazy, (p(Yo|Y1,0?)) such that D(C,Cy) = é2. (1)

To show how to solve this problem we introduce additionalatioh. Recall that the expression curves
consist of sets of cubic splines. As mentioneddizthods, splines can be fully specified by a set of control
points. LetF} be the set of control points fd@r;, andF be the set of control points for a cur¢é Because
Fy, and F¢ fully specify C, andC, we can use the notatiol (F¢, F7) instead ofD(C, Cy). In addition,
based on our model we can writg = SF; *, andYs = SF¢. Since individual noise terms are normally
distributed, it can be shown (by taking the log and ignoringstant terms) that maximizing Y¢|Y1, 0?)

is equivalent to minimizindY; — Y¢)? (Y1 — Y¢). Thus, the above maximization problem can be written
as the following quadratic minimization problem:

ming, (S(Fy — Fo )T (S(Fy, — Fe)) such that D(F¢, Fy) = ¢ : 2)
This problem can be rewritten as a quadratic minimizatiablem, as shown in the following lemma.

Lemma 0.1 The minimization problem
ming, (S(F) — Fo))T (S(Fy — Fo)) such that D(Fo,F)) =e
can be written as
ming(S)T (S0) such that oTAs=1,
whereA is a positive definite matrix.

Proof: First, we need to explicitly represett(C, C1) using F¢ andF;. This could be done as follows

Ve

J (s([Fy — Fe])*dt

V )
wheres(t) is the spline basis function evaluated at timeSetd = F; — F¢, then we havgS(F; —
Fo)T(S(Fy — F¢)) = (S6)T(80). As for the integration, denote the number of splines (orrimaber

of piecewise polynomials) by, and letp . . . p, be the set of start and end points for the individual splines
(that is, the first spline starts a§ = v, and ends gt; and so on). Thus, the integration part can be rewritten

D(C,Cy) = D(F¢, F1) =

7( (t)[Fy — Fo))*dt = Z‘jpf ZaT 7 s(t)T)dt)d .

Becauses(t) is continuous polynomial betwees andp;;;, we can evaluate the integral in the above
equation. Note that this integral is actually a matrix, anguest mentioned each entry in that matrix can

Di+1
be evaluated. Sa¥; — ( f (s(t)s(t)T)dt and letB = Y, B;, then f( (£)6)2dt = 6T BS. Note thatB is

positive semidefinite, smce the integral on the right hadd sneasures the squared distance between two
splines. To show thaB is positive definite, we note thatdf £ 0, then the two sets of control points differ
in at least one entry. Using a B-spline basis function, easinomial is only supported by four control

*Note that we omit the noise term from this equation since wenaw using the predicted reference splines.



points. Since the basis for a cubic polynomial is of degreg, fwwo identical cubic polynomials cannot
be represented by two different sets of four control poiftsus, at least in the segment corresponding to
this polynomial, the two curves differ, and since the inéégneasures the squared distance between the two
curves, the result will be- 0. SettingA = B/(V +¢?) proves the lemma because bdtrande? are positive
values. [

Next, we use Lagrange multipliers to show that the solutsoa vectors such that is the eigenvector
with the smallest eigenvalue for the matrx ! S7'S, as we prove in the following lemma.

Lemma 0.2 Let§ be the eigenvector with the smallest eigenvalue for theirmatr! 7S, thens (appro-
priately scaled), is the solution to the following minintiza problem:

ming(S6)T (S9) such that sTAs=1. (3)

Proof: Using Lagrange multipliers we can wrife= (S9)7'(S§) — AdT A — ). Taking the derivative with
respect toj and settingZk = 0 we get: 7.6 = AA§ = A~1S7S5 = Xd. Thus,d is an eigenvector of
A~1STS. Multiplying both sides of the above equation 8%A we get: 675756 = X617 A5 = X, where
the last equality results from our constraidf @6 = 1). Becauses’ ST S¢ is the quantity we wish to
minimize, A must be the smallest eigenvaluef!S?'S, ands should be the eigenvector corresponding to
that eigenvalue, appropriately scaled so tHatlé = 1. [

Now, setly = F; — ¢ andYy = SF;s. Based on the discussion above, we can now comgdte|C,, Hy) =
p(Y(S Yla 02)'

Using Yy we can now perform the hypothesis testing in the followingywdirst, as discussed in
Methods we setp(Cy|Cy, H1) = p(YJ|o?, Hy), which can be written ag(YJ|Yy, o) since underH,,
C, represents the mean curve for the second experimentHFave havep(Cs|Cy, Hy) = p(Ys|Y1,0?),
and thus the log likelihood ratio evaluates to:

- (g-vpT(vg-v))

p(Cs|Cy, Hy) e T (Y- Yy (Y - Yy)
2log ————— =21 — _ 4
o8 p(C2|Cy, Hy) 8 e,w o2 4)

Next, to perform a significance test, we use fffedistribution withg degrees of freedom (whetgis the
number of spline control points used by the curves).

Appendix II: The Symmetric Version of our Algorithm

So far we have assumed a fixed referenced curve. That is, wheonvpute the area between the reference
and test curves we do not consider the fact that the referemae might be a noisy realization of the
true underlying curve. Under the null hypothesis we assumthoth data sets were generated from the
same underlying profile, and thus a symmetric version of ¢tgordhm seems more appropriate for this
hypothesis. As we show in this section, the algorithm priegskim M ethods can also be described as
a symmetric test on both the reference and test curve (wiphogpately scaled” values), and thus our
algorithm is suitable for the null hypothesis as well.

Instead of relying on the reference curve, we assume that@oand Cs are realizations of the same
underlying curveC'. We reformulate the comparison in terms of joint probab#itover the two curves
(making the comparison symmetric) but rely on the distanewvéen the curves rather than the points



directly. As inMethods, lete? = D(Cy, Cy). For the null hypothesis we solve the following maximizatio
problem,

mazc,cr onP(Yer, Yon|Yo,0?)  suchthat  D(C',C") = €,

whereC’ andC” are new (arbitrary) versions of the reference and test suamelC' denotes the common
underlying true curve. Due to the Gaussian noise we assunimadigidual measurements, the maximization
overCyieldsYq = (Yo + Yer)/2; therefore, ignoring constant terms, we have

log P(Yer, You|Ye, 02) = —(1/20%)(||Yer = Yo + ||[Yor — Yel|?) = —(1/40%)||[Yer — Yeu||? .

If we now setYy = Yo — Yo = SF' — SF” = S4, then we end up solving the same optimization
problem as before:

ming(S9)T (S9) such that olAs=1.

The only difference between the result obtained by this ptkitsymmetric) and the result discussed in
Methods (asymmetric) is that the value of the likelihood ratio tesing the symmetric test is half the value
obtained using the asymmetric method. Thus, for eveéryalue cutoff used by the asymmetric method,
there is a corresponding value for the symmetric method which yields the same regudtsthe same set
of genes are determined to be significantly changing). BsaurP value is tuned using synthetic data,
changing from the asymmetric to the symmetric method wooldhave changed the results presented in
this paper. Since the asymmetric method is somewhat eastaptain, we focused on M ethods.

Appendix Ill: Value Specific Variance

So far we have assumed that all expression values have tleevsaianceg?. In practice, we have found that
the variance of expression measurements depends on thé&uwleget expression values or fold changes (see
http://www.psrg.lcs.mit.edu/DiffExp/DiffExp.html). @king this fact into account is especially important for
time-series data, because small shifts in the magnitudepoéssion values can result in large global differ-
ences for genes with high fold change values. Our framewankbe modified to use variances that depend
on expression value magnitudes. Instead of maximigifig-|Y1,o?) we maximizep(Yc|Y1, 0% ...02)
whereo? ... o2, are them expression value specific variances for the samplég irRecall that the rows
of S (the spline basis function matrix) correspond to the timetgsothat were sampled in the reference
experiment.

Denote bys; the ith row of S. LetS! = S;/o;. Then maximizingp(Yc|Y1, 0% ... 02,) is equivalent to
minimizing (S’ (F, — Fc))1 (S’ (Fy — F¢)), and we proceed by replacigywith S’ in Eqg. 3. This results
in the differential weighting of the individual errors aralY;, leading to a reduction in the effect that
experimental artifacts and associated high variance egnipldetermining differential gene expression.

To compute the value-specific variance for a vatuee use the following method. Lé?; and Ry be
two repeats of the same experiment, and léénote a weighting coefficient (in this paper we ése 0.25),
which allows us to control the range of values that will cidmtte to the computation of the variance. For
rt € Ry letrl € Ry be the corresponding repeat in the second experiment. Set

; ]. 1 2 2

i) = e(r1—)%/(20%)
p(r1) 5702

andP = sum;p(rt). Then the value-specific variance forv, is computed by setting

5 =)’
Vyp = -
- P



That is,v, is computed by using a Gaussian bump around the selecteel Zdland weighting the contri-
bution of the different repeats based on their distance ftom

Appendix IV: Synthetic Data Results

To test the sensitivity of our algorithm, and to compare iptevious methods that work by comparing
individual points, we generated four sets of sampids— Y4 as follows (see Fig. 4)Y'1 consisted of

a set of uniform samples from a sinusoid between 04ndY 2 was generated by adding random noise
(normally distributed with mean 0) t§1. Y3 was generated by adding a positive valbieto the values

in Y'1. Finally, we sett4 = aY1 where0 < a < 1. The parameterg andb were selected such that the
mean absolute error of all sets with respecttowas equal. Whil& 2 is a noisy realization o¥'1, Y3 and

Y 4 represent consistent additive or multiplicative differes. If the input set is normalized appropriately,
such consistent differences over time might representhieébgical change. For example, in cell cycle
experiments, genes that show a reduced cycling profile atepty effected by the experimental condition
and should be detected.

We repeated the process of generalifj— Y4 1000 times for each of several sampling rates that were
chosen to be similar to those used in actual expression iexgets, and with various noise variances. For all
the different sampling rates and noise models, our alguoritbrrectly identified th& 2 samples as a noisy
realization ofY'1l. As the sampling rate increased, so did the ability of oupidlgm to correctly detect
consistent change¥ ¢ andY 4) as differentially expressed. To compare our results wigthmds that work
directly on the input samples, we have also performed thethgsis testing with the actual samples by
replacingYs with Y2, Y3, Y4. In Fig. 4 we present the results of the two methods using @¥kes (similar
to the sampling rates of (1)) and a noise model derived frome Beries repeats from Zlat al (2). While
in all cases our algorithm correctly identifi@® as a noisy realization df 1, the sample based method
identified 90% of ther'2 samples as differentially expressed. Since in time sekpsrenents most genes
do not change, such a high false-detection rate cannot d&tetl. In addition, our algorithm was able to
detect more of th& 3 andY 4 curves, because the number of degrees of freedom it usesikesthan the
number used by the sample based method. Similar resultsevai¢ained with other sampling rates and
different noise models.
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