
Appendix I: Assigning Significance to Global Difference

Recall that our goal is to solve the following maximization problem:

����� �� ��� 	�
���� such that �����
� � �
. (1)

To show how to solve this problem we introduce additional notation. Recall that the expression curves
consist of sets of cubic splines. As mentioned in�������, splines can be fully specified by a set of control
points. Let�
 be the set of control points for

�

, and�� be the set of control points for a curve

�
. Because�
 and�� fully specify

�

and

�
, we can use the notation���� ��
� instead of�����
�

. In addition,
based on our model we can write

�
 � ��
 �, and
�� � ���. Since individual noise terms are normally

distributed, it can be shown (by taking the log and ignoring constant terms) that maximizing� ��� 	�
���
is equivalent to minimizing��
 � ���� ��
 � ���

. Thus, the above maximization problem can be written
as the following quadratic minimization problem:��� � ����
 ������ ����
 ����� such that ���� ��
� � �

. (2)

This problem can be rewritten as a quadratic minimization problem, as shown in the following lemma.

Lemma 0.1 The minimization problem

��� � ����
 ������ ����
 ����� such that ���� ��
� � �
can be written as

���! ��"�� ��"� such that
"� #" � $

,

where
#

is a positive definite matrix.

Proof: First, we need to explicitly represent�����
�
using�� and�
. This could be done as follows

�����
� � ���� ��
� �
%&'%( �����)�
 ���*���+ ,

where ���� is the spline basis function evaluated at time
�
. Set

" � �
 � ��, then we have����
 �
����� ����
 � ���� � ��"�� ��"�. As for the integration, denote the number of splines (or thenumber
of piecewise polynomials) by,, and let�- . . .�/ be the set of start and end points for the individual splines
(that is, the first spline starts at�- � 01

and ends at�
 and so on). Thus, the integration part can be rewritten%&2
%( �����)�
 ���*��� �

/3
456- 789:
2

78
�����"��� � /3
456- "� �789:

2

78
���������� ����" .

Because���� is continuous polynomial between�5 and�5;
, we can evaluate the integral in the above
equation. Note that this integral is actually a matrix, and as just mentioned, each entry in that matrix can

be evaluated. Set<5 � �789:
'
78

���������� ��� and let< � =5 <5, then
%&'%( �����"��� � "� <"

. Note that< is

positive semidefinite, since the integral on the right hand side measures the squared distance between two
splines. To show that< is positive definite, we note that if

" >� ?
, then the two sets of control points differ

in at least one entry. Using a B-spline basis function, each polynomial is only supported by four control@
Note that we omit the noise term from this equation since we are now using the predicted reference splines.
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points. Since the basis for a cubic polynomial is of degree four, two identical cubic polynomials cannot
be represented by two different sets of four control points.Thus, at least in the segment corresponding to
this polynomial, the two curves differ, and since the integral measures the squared distance between the two
curves, the result will be�0. Setting

# � <��+ ���
proves the lemma because both

+
and

�
are positive

values.

Next, we use Lagrange multipliers to show that the solution is a vector
"

such that
"

is the eigenvector
with the smallest eigenvalue for the matrix

#3
�� �
, as we prove in the following lemma.

Lemma 0.2 Let
"

be the eigenvector with the smallest eigenvalue for the matrix
#3
�� �

, then
"

(appro-
priately scaled), is the solution to the following minimization problem:

���! ��"�� ��"� such that
"� #" � $

. (3)

Proof: Using Lagrange multipliers we can write� � ��"�� ��"���"� #" ��
. Taking the derivative with

respect to
"

and setting���
! � ?

we get:
�� �" � �#" � #3
�� �" � �"

. Thus,
"

is an eigenvector of#3
�� �
. Multiplying both sides of the above equation by

"� #
we get:

"� �� �" � �"� #" � �
, where

the last equality results from our constraint (
"� #" � $

). Because
"� �� �"

is the quantity we wish to
minimize,

�
must be the smallest eigenvalue of

#3
�� �
, and

"
should be the eigenvector corresponding to

that eigenvalue, appropriately scaled so that
"� #" � $

.

Now, set�! � �
 �"
and

�! � ��!. Based on the discussion above, we can now compute� �� 	�
��-� �� ��! 	�
���.
Using

�! we can now perform the hypothesis testing in the following way. First, as discussed in������� we set� �� 	�
��
� � � �� 	 	���
�
, which can be written as� �� 	 	� 	 ��� since under

�

,� represents the mean curve for the second experiment. For

�- we have� �� 	�
��-� � � ��! 	�
���,
and thus the log likelihood ratio evaluates to:


 �� � �� 	�
��
�� �� 	�
��-� � 
 ��
�3 �� ���� ���� �� ���� �������3 ��

:
����� ��

:
�������

� ��
 ��!�� ��
 ��!�� . (4)

Next, to perform a significance test, we use the� distribution with, degrees of freedom (where, is the
number of spline control points used by the curves).

Appendix II: The Symmetric Version of our Algorithm

So far we have assumed a fixed referenced curve. That is, when we compute the area between the reference
and test curves we do not consider the fact that the referencecurve might be a noisy realization of the
true underlying curve. Under the null hypothesis we assume that both data sets were generated from the
same underlying profile, and thus a symmetric version of our algorithm seems more appropriate for this
hypothesis. As we show in this section, the algorithm presented in ������� can also be described as
a symmetric test on both the reference and test curve (with appropriately scaled� values), and thus our
algorithm is suitable for the null hypothesis as well.

Instead of relying on the reference curve, we assume that both
�


and
� are realizations of the same

underlying curve
�

. We reformulate the comparison in terms of joint probabilities over the two curves
(making the comparison symmetric) but rely on the distance between the curves rather than the points
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directly. As in�������, let
� � ���
���. For the null hypothesis we solve the following maximization

problem,

������� ����� ���� ����� 	�� ��� such that ���	 ��		� � �
,

where
�	

and
�		

are new (arbitrary) versions of the reference and test curves and
�

denotes the common
underlying true curve. Due to the Gaussian noise we assume for individual measurements, the maximization
over

�
yields

�� � ���� � ���� ��
; therefore, ignoring constant terms, we have
�� � ���� ����� 	�� ��� � ��$�
���		��� ��� 		 � 		���� ��� 		� � ��$����		��� ����� 		 .

If we now set
�! � ��� � ���� � �� 	 � �� 		 � �"

, then we end up solving the same optimization
problem as before: ���! ��"�� ��"� such that

"� #" � $
.

The only difference between the result obtained by this method (symmetric) and the result discussed in������� (asymmetric) is that the value of the likelihood ratio test using the symmetric test is half the value
obtained using the asymmetric method. Thus, for every� value cutoff used by the asymmetric method,
there is a corresponding� value for the symmetric method which yields the same results(i.e. the same set
of genes are determined to be significantly changing). Because our� value is tuned using synthetic data,
changing from the asymmetric to the symmetric method would not have changed the results presented in
this paper. Since the asymmetric method is somewhat easier to explain, we focused on it�������.
Appendix III: Value Specific Variance

So far we have assumed that all expression values have the same variance,
�

. In practice, we have found that
the variance of expression measurements depends on the magnitude of expression values or fold changes (see
http://www.psrg.lcs.mit.edu/DiffExp/DiffExp.html). Taking this fact into account is especially important for
time-series data, because small shifts in the magnitude of expression values can result in large global differ-
ences for genes with high fold change values. Our framework can be modified to use variances that depend
on expression value magnitudes. Instead of maximizing� ��� 	�
��� we maximize� ��� 	�
��
 . . . ���
where

�
 . . . �� are the� expression value specific variances for the samples in
�


. Recall that the rows
of

�
(the spline basis function matrix) correspond to the time points that were sampled in the reference

experiment.
Denote by

�5 the i
��

row of
�

. Let
�	5 � �5��5. Then maximizing� ��� 	�
��
 . . . ���

is equivalent to
minimizing ��	 ��
 ������ ��	 ��
 �����, and we proceed by replacing

�
with

�	
in Eq. 3. This results

in the differential weighting of the individual errors around
�


, leading to a reduction in the effect that
experimental artifacts and associated high variance can play in determining differential gene expression.

To compute the value-specific variance for a value� we use the following method. Let�

and� be

two repeats of the same experiment, and let� denote a weighting coefficient (in this paper we use� � ?.
�),
which allows us to control the range of values that will contribute to the computation of the variance. For�5
 � �


let �5 � � be the corresponding repeat in the second experiment. Set

� ��5
� � $
�
	� �
�8:

3���
��
and� � ���5� ��5
�. Then the value-specific variance for�,

0� is computed by setting

0� � 45
��5
 � �5�

� .
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That is,
0� is computed by using a Gaussian bump around the selected value (�) and weighting the contri-

bution of the different repeats based on their distance from�.

Appendix IV: Synthetic Data Results

To test the sensitivity of our algorithm, and to compare it toprevious methods that work by comparing
individual points, we generated four sets of samples

� $ � � �
as follows (see Fig. 4).

� $
consisted of

a set of uniform samples from a sinusoid between 0 and
�	.

� 

was generated by adding random noise

(normally distributed with mean 0) to
� $

.
� �

was generated by adding a positive value,�, to the values
in

� $
. Finally, we set

� � � �� $
where

? � � � $
. The parameters� and� were selected such that the

mean absolute error of all sets with respect to
� $

was equal. While
� 


is a noisy realization of
� $

,
� �

and� �
represent consistent additive or multiplicative differences. If the input set is normalized appropriately,

such consistent differences over time might represent realbiological change. For example, in cell cycle
experiments, genes that show a reduced cycling profile are probably effected by the experimental condition
and should be detected.

We repeated the process of generating
� 
�� �

1000 times for each of several sampling rates that were
chosen to be similar to those used in actual expression experiments, and with various noise variances. For all
the different sampling rates and noise models, our algorithm correctly identified the

� 

samples as a noisy

realization of
� $

. As the sampling rate increased, so did the ability of our algorithm to correctly detect
consistent changes (

� �
and

� �
) as differentially expressed. To compare our results with methods that work

directly on the input samples, we have also performed the hypothesis testing with the actual samples by
replacing

�! with
� 
�� ��� �

. In Fig. 4 we present the results of the two methods using 24 samples (similar
to the sampling rates of (1)) and a noise model derived from time series repeats from Zhu

�� �� (2). While
in all cases our algorithm correctly identified

� 

as a noisy realization of

� $
, the sample based method

identified 90% of the
� 


samples as differentially expressed. Since in time series experiments most genes
do not change, such a high false-detection rate cannot be tolerated. In addition, our algorithm was able to
detect more of the

� �
and

� �
curves, because the number of degrees of freedom it uses is smaller than the

number used by the sample based method. Similar results where obtained with other sampling rates and
different noise models.
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