Table 4. Significant experiments for nocycling genes

Change	Reference	Experiment type	Experiment details
Up-regulated	Gasch (1)	Red/ox	105 min 1 mM menadione / 105min wt
Up-regulated	Gasch (1)	Red/ox	180 min 2.5 mM DTT/180min DTT pool
Up-regulated	Gasch (1)	Red/ox	120 min 2.5 mM DTT/120min DTT pool
Up-regulated	Gasch (1)	Red/ox	40 min 1.5 mM diamide / 40 min wt
Up-regulated	Gasch (1)	Red/ox	50 min 1.5 mM diamide / 50 min wt
Down-	Gasch (1)	Red/ox	15 min 2.5 mM DTT/ 15min DTT pool
regulated			
Up-regulated	Gasch (1)	Starvation	6 hr YNB-AA/6hr wt
Up-regulated	Gasch (1)	Starvation	10hr YPD 30C / 10h wt
Up-regulated	Gasch (1)	Starvation	1 d YPD 25C / 1d wt
Up-regulated	Gasch (1)	Starvation	2% EtOH/EtOH Carbon pool
Down-	Natarajan	Starvation	δ gcn4 100 mM 3AT/ δ gcn4 100 mM 3AT δ gcn4
regulated	(2)		
Up-regulated	Jelinsky (3)	Alpha factor	G1 arrest - 0.3 uM α factor 120 min α factor/wt
Up-regulated	Roberts (4)	Alpha factor,	90 min α factor, 50 nM/90min wt
		pheromone	
Up-regulated	Roberts (4)	Alpha factor,	120 min α factor, 50 nM/120 min wt
		pheromone	
Down-	Lyons (5)	Zinc	Replete vs. deficient zinc / 3 mM 61 nM
regulated			
Down-	Lyons (5)	Zinc	Replete vs. deficient zinc / 3 mM 76 nM
regulated			
Down-	Lyons (5)	Zinc	δ zap1 excess vs. deficient zinc/ δ zap1 3 mM δ
regulated			zap1 61 nM
Down-	Lyons (5)	Zinc	δ zap1 excess vs. deficient zinc, δ zap1 3 mM
regulated			δ zap1 76 nM
Up-regulated	Causton (6)	Others	Alkali 80'/0'
Down-	Jelinsky (3)	Others	30 min 0.1% MMS/30 min wt
regulated			

The 20 expression experiments in which the set of nocycling genes identified by our algorithm were significantly correlated. See *Results and Discussion*.

- [1] Gasch, A.P. and Spellman, P.T. and Kao, C.M. and Carmel-Harel, O. and Eisen, M.B. and Storz, G. and Botstein, D. and Brown, P.O. (2000) *Mol. Biol. Cell* 11(12), 4241-4257
- [2] Natarajan, K. and Meyer, M.R. and Jackson, B.M. and Slade, D. and Roberts, C. and Hinnebusch A.G. and Marton, M.J. (2001) *Mol. Cell. Biol.* 21, 4347-4368
- [3] Jelinsky, S. and Estep, P. and Church, G. and Samson, L. D. (2000) Mol. Cell. Biol. 20 8157-67

- [4] Roberts, C.J. and Nelson, B. and Marton, M.J. and Stoughton, R. and Meyer, M.R. and Bennett, H.A. and He, Y.D. and Dai, H. and Walker, W.L. and Hughes, T.R. and Tyers and *et al* (2000) *Science* 287, 873-880
- [5] Lyons, T.J. and Gasch, A.P. and Gaither, L.A. and Botstein, D. and Brown, P.O. and Eide, D. (2000) *Proc. Natl. Acad. Sci. USA* 97, 7957-7962
- [6] Causton, H.C. and Ren, B. and Koh, S.S. and Harbison, C.T. and Kanin, E. and Jennings, E.G. and Lee, T. and True, H.L. and Lander, E.S. and Young, R.A. (2001) *Mol. Biol. Cell* 12, 323-337