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Appendix 

 

Basic Model 

 

We follow the growth dynamics of the two bacterial lineages within the focal patch, to determine 

the number of cells of the focal lineage that survive catastrophe. The growth of the two lineages, 

X and Y, is given by: 

 

dx

dt
= 1! (" + #" )( )xt 1! (xt + yt )( ) , and                                                                                    (A.1) 

dy

dt
= 1! "( )yt 1! (xt + yt )( ) .                                                                                                      (A.2) 

 

The growth of the whole population is: 

 

dz
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= 1! " + p

t
#"( )( )zt 1! zt( ) ,                                                                                                  (A.3) 

 

where pt = xt/zt. From the quotient rule, the change in this frequency is given by: 
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Noting that changes in frequency are vanishingly small in this nearly-neutral case, we can write pt 

= p0 + O(δπ) where p0 is the starting frequency of the focal lineage. The differential equation 

(A.3) yields the general solution: 
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where z0 is the initial population size. The differential equation (A.4) yields the general solution: 
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At time t the number of cells in the focal lineage is xt = pt zt, and the number of persister cells 

belonging to the focal lineage is Pt = (π+δπ)xt, which is given by: 
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where ẑ
t
= z

0
/ z

0
+ (1! z

0
)e

!(1!" )t( )  is the total population size at time t for the neutral case (δπ = 

0). Darwinian fitness (w) is given by the number of persister cells in the focal lineage at time T, 

i.e. 

! 

w = P
T

= P
t t=T

. 

 

We now perform an evolutionary stability analysis, and ask: which resident strategy π (performed 

in the focal population by the lineage Y) is the best response to itself, so that a rare lineage (the 

focal lineage X) maximizes its fitness by employing the same strategy π? The ESS persister 

allocation π*, when it takes an intermediate value (0 < π* < 1), thus satisfies 

dw / d!" |!" =0," =" *= 0  (Taylor 1996), and this yields the exact, implicit solution (1). The condition 

for an ESS at π* = 0 is LHS (1) ≥ 1 when π* → 0, which is never satisfied and so some persister 

allocation will always be favoured by natural selection. The condition for an ESS at π* = 1 is 

LHS (1) ≤ 1 when π* → 1, which is equivalent to T ≤ 1/(1-z0). In the limit of no resource 

competition (z0 → 0) this is T ≤ 1, so here full allocation to persisters (π* = 1) is predicted when 

the time until catastrophe is less than unity, and full allocation to persisters is predicted for 

increasingly longer waiting times as resource competition increases. In the limit of full resource 

competition (z0 → 1) then full allocation to persister function is predicted irrespective of the time 

until catastrophe.  

 

Other special cases of the parameters yield explicit analytical solutions for π*. We know that T ≤ 

1 gives π* = 1. In the limit of infinite time until catastrophe (T→∞), (1) obtains 

!* = 1 / 1" (1" p0 )ln(z0 )( ) . In the absence of resource competition (z0 → 0), i.e. exponential 

growth, then (1) can be solved to yield π* = 1/T, and we know that full competition (z0 → 1) 

leads to full allocation into persisters (π* = 1). Individual cells are motivated to behave for the 

good of the whole population when the latter is genetically homogenous; here p0 = 1 and 

!* = 1+" ze
T #1
/ (1# z)( )( ) /T , where Ω denotes the Lambert W-function, or omega function. 
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Random catastrophes 

 

We now include further realism in our model of persister evolution by relaxing the assumption 

that catastrophe always strikes at time T; rather, we now consider that it strikes at any time t 

according to the density function φ(t). Hence, fitness is given by the expected number of persister 

cells at the time of catastrophe, i.e. w = !(t)P
t

0

"

# dt . For illustration, we consider that there is a 

fixed probability of catastrophe at all times, and hence waiting times are exponentially distributed 

and we have !(t) = e" t /T /T , where T  is the expected waiting time. This yields an implicit 

solution for π*: 

 

! 

z
0
p
0
e
" t /T 

z
0

+ 1" z
0( )e" 1"# *( )t

1"# * 1" p
0( ) t "

ln 1" z
0
1" e

1"# *( )t( )( )
1"# *

$ 

% 

& 
& 

' 

( 

) 
) 

+
p
0
1" z

0( )e" 1"# *( ) t

z
0

+ 1" z
0( )e" 1"# *( )t

$ 

% 

& 
& 

' 

( 

) 
) 

$ 

% 

& 
& 

' 

( 

) 
) 
dt

0

*

+ = 0  (A.8) 

 

which can be solved numerically, as illustrated in Figure 3.  

 

Survival, growth and efficiency of resource use 

 

So far we have assumed that persister cells exhibit zero growth and always survive catastrophes, 

and that nonpersister cells grow and have zero survival through catastrophic events. We have also 

assumed that persister cells exert the same competitive strain on resources as nonpersister cells. 

We now extend the basic model to allow persister cells a relative growth rate g and relative 

survival s, with respect to the growth and survival of nonpersister cells. We also allow bacterial 

persistence to represent a more efficient use of resurces, with the competitive strain on resources 

exerted by a persister cell being a fraction a of that exerted by a nonpersister cell. The change in 

the numbers of cells in lineages X and Y can now be written as: 

 

! 

dx

dt
= 1" # + $#( ) 1" g( )( )xt 1"% t( ), and                                                                                      (A.9) 

! 

dy

dt
= 1"# 1" g( )( )yt 1"$ t( ),                                                                                                     (A.10) 
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where ζt = ((π+δπ)a+1-(π+δπ))xt + (πa +1-π)yt is the ‘effective’ size of the population, in terms 

of its total strain on the population’s resources, with each persister cell contributing a fraction a 

of the strain imposed by each nonpersister cell. At carrying capacity we have ζ = 1; the actual 

number of cells maintained here will depend on the population’s allocation to persister function, 

and is z = 1 when no persisters are present. Similarly, we may define an ‘effective’ frequency ℘t 

= ((π+δπ)a+1-(π+δπ))xt/ζt  of the focal lineage, in terms of its impact on resource competition. 

We find that the change in these transformed population variables is given by: 
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Using the same procedure as outlined previously, we obtain the general solutions: 
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These can be back-transformed to give zt and pt in terms of z0, p0 and the other model parameters. 

Again, we assume that Darwinian fitness is proportional to the number of focal lineage cells that 

survive the catastrophe at time T: 

 

! 

w = pT zT " + #"( ) + 1$ " + #"( )( )s( ) .                                                                                       (A.15) 

 

Substituting in our expressions for zt and pt, and evaluating at t = T, we then employ the usual 

procedure to find the condition for (internal) ESS, which is: 
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Note that, in the special case of g = s = 0, a = 1, we recover the basic model and the ESS 

condition given in equation (1). Illustrative numerical solutions for the extended model are 

presented in Figure 4. 

  

In all cases, we have neglected de novo mutation, assuming that this is infrequent and introduces 

only minor variation, as is standard in social evolutionary analyses (Taylor & Frank 1996, Frank 

1998). Although mutation can be ignored in higher organisms, it could play a role in microbes, 

under conditions such long-term infections (West et al. 2006). A model that explicitly 

incorporated mutational effects would generate genetical variation among clonemates, lowering 

relatedness, and hence reduce the ESS persister allocation. 
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